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ABSTRACT 

The method of the finite elements is a flexible numeric procedure both for interpolation and 
approximation of the solutions of partial differential equations. The generalized polyhedral 
finite elements (Milbradt 2004) lead to a greater flexibility in domain decomposition. 

A general simple local coordinate system, the natural element coordinates, was developed, 
which makes a formulation of interpolation functions on polyhedral elements possible that 
are independent of the dimension of the space, of the localization and vertex number. 

With these natural element coordinates, which can be understood as generalized barycentric 
coordinates, it is very easy to define interpolation functions for the use of the finite element 
method. This paper presents hierarchical edge based functions, which are formulated in 
natural element coordinates.  

The unknown solution of the partial differential equation will be approximated by finite 
element interpolation. The resulting integral equations induce a system of linear equations, 
which needs to be solved with appropriate methods. The evaluation of the resulting integrals 
is the key ingredient in the proposed methodology. In this paper we present numerical 
approximations of such integrals over any polyhedrons. A fast and less computation intensive 
solution is the use of quadrature rules. This paper will show all steps needed to find 
quadrature points on any strict regular polyhedrons in any dimension. The existence of more 
then one set of quadrature points on higher polyhedrons is of interest.  
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INTRODUCTION 

Finite elements on the base of arbitrary polyhedrons (Milbradt 2001) offer a higher flexibility 
for the mesh generation and allow for a better mapping of natural and technical structures as 
they appear for example in biomechanics and crystallogics. To achieve this natural element 
coordinates were successfully introduced. The formulation of interpolation functions on the 
base of natural element coordinates leads to a generalized construction. The unknown 
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solution of the numerical approximation of partial differential equations will be 
approximated by finite element interpolation. During this process integral equations arise, 
which are solved with suitable methods (Pick 2004). An analytical determination of these 
integrals over polyhedrons is normally not possible. They need to be realized by numerical 
approximation. An elaboration of those numerical approximations is the main focus of this 
article. 

FINITE ELEMENT APPROXIMATION ON POLYHEDRONS 

We focus on the numerical approximation of the solution u x

 

of a partial differential 
equation in a bounded domain  in n

 

with the finite element method. The unknown 
solution u is approximated through a Galerkin procedure, which uses a linear combination of 
interpolation functions and the still unknown parameters iu :  

1

:
n

i i
i

u x u x u x

 

Interpolation functions on classical finite elements are defined on triangles, quadrangles, 
tetrahedrons and quads. Hence, the domain 

 

must be decomposed with such elements 
accordingly. The interpolation functions for each of these elements are well known. If 
necessary, a transformation on standard elements is done. The application of arbitrary 
polyhedrons as a base of finite elements needs a generalized formulation of these 
interpolation functions. 

NATURAL ELEMENT COORDINATES 

A general formulation of interpolation functions is possible with the introduction of natural 
element coordinates because they are usable for all convex polyhedrons in all positions, 
forms and dimensions. The natural element coordinates can be understood as the restriction 
of the natural neighbourhood interpolation introduced by Sibson (1980) to the convex 
polyhedron. They are computed using the Voronoi decomposition of the polyhedron. 

The Voronoi decomposition of first order for a convex polyhedron is determined by its 
vertices ie . Each vertex of the convex polyhedron has its own Voronoi region. The Voronoi 
region of a vertex ie

 

is the set of all points p, which have a smaller or equal distance to the 
vertex ie  as their distance to the remaining vertices je :  

: : , ,i n i jVR e p d p e d p e j i . 

The Voronoi region of second order of a convex polyhedron is determined concerning its 
vertices ie

 

and a point x of the convex polyhedron. A Voronoi region of second order is the 
set of points p, whose distance to the point x is smaller or equal to the distance to a vertex ie . 
If its distance to this vertex is smaller or equal their distance to the remaining vertices je  is:  

, : : , , ,i n i jVR x e p d p x d p e d p e j i . 
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The natural element coordinates of the point x concerning the vertex ie

 
are determined over 

the Voronoi regions of second order (see Figure 1). Each Voronoi region of first or second 
order assigns itself a Lebesgue measure iVR e . This measure is dimensional 
independent and corresponds to the length in 1d, to common surface area in 2d and volume 
in 3d Euclidean space. The ratio of the Lebesgue measure , iVR x e

 

from the Voronoi 
region of second order of the point x and a vertex ie

 

to the Lebesgue measure VR x of 
the Voronoi regions of first order of the point x is called the unique natural element 
coordinates. If the considered point x lies outside of the convex polyhedron, then no 
representation in natural element coordinates will exist.  

, ,
( )

,

i i

i i

VR x e VR x e
x

VR x VR x e

 

The natural element coordinates are not negative ( 0 1i ) and take a value of one at the 

assigned point of reference and zero at all other points of reference:  

1

0
j

i

i j
e

i j
. 

The natural coordinates satisfy the partition of unity:   

1

1
n

i
i

 

and they are completely linear    

1

n
i

i
i

e x . 

As a result of this natural element coordinates construction for convex polyhedron, it is not 
necessary, that all local element coordinates of a point x depend on all vertices of the 
polyhedron. If the second order Voronoi region , iVR x e of the point x and the vertex ie

 

is 
empty the coordinate i

 

for this point regarding that vertex will have a zero value.  
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Figure 1: Voronoi decomposition 

If the point x lies on a facet of the polyhedron the resulting Voronoi regions of second order 
will have infinite measures. It can be shown by limit value calculation (Milbradt 2001), that 
the calculation of the natural element coordinates depends only on vertices of the facet. Thus 
the calculation is limited to the convex polyhedron of the facet.  

INTERPOLATION FUNCTIONS 

The introduced natural element coordinates can directly be used as interpolation functions 
(Milbradt 2004). 

( ) :i ix

 

It stands for an interpolation function, which has the value of one at vertex i of the 
polyhedron and is linear on the edges. It is also possible to define interpolation functions of 
higher order in lambda. Usually hierarchical interpolation functions are used for the p-
version of the finite element method. The definition of hierarchical interpolation functions on 
polyhedrons is equivalent to classical hierarchical interpolation function. But it has the 
advantage that of geometry independence. 

Edge quadratic hierarchical interpolation function:   

1,2 1,2 1 2:x x x x

 

Hereby, 1,2

 

is the interpolation function on the edge between vertex 1 and 2. Once found 
the advantage is that these functions can be used on any polyhedron in any position and 
space. This is because the natural element coordinates are defined there and have the proper 
attributes. 

Hierarchical interpolation functions are used for p-adaptive methods. The local increasing of 
the polynomial degree leads to further columns and rows in the system matrix. Already 
calculated integrals can still be used. 
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Figure 2: Normalized hierarchical interpolation functions in 1d 

Edge oriented hierarchical interpolation functions on arbitrary polyhedrons can be build with 
the following rule:  

1

1
:

1

n

i i j
k

k

n

 

Hereby is n the degree of the interpolation function, in relation to the natural element 
coordinates. These formulas can directly be used for 2d elements and results in the following 
functions. 

Figure 3: Hierarchical interpolation functions 2d 

Figure 3 shows normalized interpolation functions of degree 3, 4 and 5 on a triangle and of 
degree 6 on a hexahedron.  

INTEGRATION WITH RIEMANN SUM 

For the solution of partial differential equations with Galerkin approximation it is necessary 
to integrate the interpolation functions over the polyhedrons. Usually, there is no analytical 
solution to these interpolation functions. Hence, a numerical method is used. Experience 
shows that Gaussian quadrature formulas deliver good solutions. Usually, they use special 
chosen sampling points and weights for these points (Bronstein 2001). However, such points 
do not exist for arbitrary polyhedrons. In order to find such points, it is initially necessary to 
calculate the integrals with another method once. 
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If a function is bounded, a Riemann integral can be build:  

0
1

( ) lim
i

b n

i ix
ia n

f x dx f x

 

Here, the integral is decomposed in n arbitrary parts ix . The sum of all volumes of these 

parts multiplied with a function value within the parts, approximate the integral.  

Figure 4: Simplex decomposition of a polyhedron 

Figure 4 shows an edge linear interpolation over a hexahedron. This function is the sum of 
six interpolation functions of degree 1 with different weights. The weights correspond to the 
values on the vertices, because they have the corresponding interpolation functions values 
equal to one. The right figure shows a decomposition of the hexahedron in triangles for the 
purpose of integration. The integral of the function is equivalent to the volume under the 
surface and can be approximated by the 64 prisms underneath.  

BARYCENTRIC DECOMPOSITION  

The design of the Riemann integral is based on the decomposition of the integration area in 
well known sub domains, such as triangles und quads. Due to this, a minimal barycentric 
simplecial decomposition will be introduced. A minimal barycentric simplecial 
decomposition is the barycentric decomposition of highest order that consists only of 
simplexes.  
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The barycentric decomposition of order n can be constructed by the following recursive 
algorithm. 

I.  Determine the order m of the polyhedron. 

II. If m>n, then 

a) calculate the barycenter of polyhedron 

b) barycentric decomposition of order n of all facets of 
the polyhedron I.) 

c) build polyhedrons out of the polyhedrons of b) and the 
barycenter of a)  

 

new polyhedron of order m 

III. Else:   

Stop  

Algortihm 1: Minimal barycentic simplicial decomposition algorithm  

It is essential for all convex polyhedrons that the barycenter lies inside. A facet is the border 
of the element. In 3d case are this surfaces, in 2d the border lines and in 1d the points. 

Figure 5: Barycentric decomposition in 2d 

Figure 5 shows the barycentric decomposition of order 1 and 0. The smallest angle becomes 
smaller with decreasing order. For this reason, the left version is more suitable for the 
approximation of the integration. 

Figure 6: Barycentric decomposition in 3d 
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Figure 6 shows that not every barycentric decomposition leads to a simplecial complex. The 
minimal barycentric simplecial decomposition of the cube shown in the middle has the order 
1. 

Now, an explicit method is obtained, that uniquely decomposes every convex polyhedron 
into a small number of simplexes. For the Riemann sum it may be better to refine these 
simplexes into smaller simplexes, which are similar to the original simplexes. In the 2d case 
such decomposition is possible. 

Figure 7: Regular triangle refinement 

Such a refinement does not exist in 3d. However, for higher dimensions is the method of 
longest side refinement (Rivara 1996) suitable. The longest side of the simplex will be 
divided in this method. From a technical view, it looks as if the longest edge is split into two 
edges, each connected to all other points. In this process two simplexes are build from the 
one, which have the same order as the original with a smaller angle. It can be shown that the 
angle in this construction does not become too bad and stays within a certain interval. 

Figure 8: Longest Side Refinement 

Figure 8 shows the refinements of order 1, 2, 3 and 4. Each convex polyhedron can be 
refined by a combination of minimal barycentric simplex decompositions and as many 
longest side refinement as wanted. Theoretically, an arbitrarily accurate approximation of the 
integral is possible with this procedure.  

QUADRATURE POINTS 

The Gaussian point integration is an efficient method for the calculation of integrals and is 
well known for triangles and quadrangles. The integration is achieved by a multiplication of 
function values on a few well selected points and their related weights. The selection of these 
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Gaussian points and weights ensures an exact integration for the designed functions. In this 
chapter the quadrature is enhanced by a special class of polyhedrons. Usually, quadrature is 
based on functions of a linear space with basis functions if . Because of properties of sum 
and integral it is sufficient for the integration of any function of that space that the basis 
functions if

 

are calculated exactly. To achieve this, m

 

points ip

 

and weights iw

 

are 
selected, so that the following identities are true:  

1 1
1

n

i i
i

f f p w

  

2 2
1

n

i i
i

f f p w

    

1

n

m m i i
i

f f p w . 

Herein, 

 

is the volume of the polyhedron. The normalization with the volume 

 

leads to a 
nonlinear system of equations of the form b A x

 

with m

 

rows and the unknowns ip

 

and 

iw . Since the basis functions are the known interpolation functions and a Riemann 
integrations is possible, the left side is known. An approach to find the solution of the 
nonlinear system of equations will be shown in the following. 

NEWTON METHOD 

To find a solution for the nonlinear system of equations the Newton method is used. It is an 
iteration method that converges with a suitable starting condition. The considered system of 
equation can be written in the following way.  

0T x

 

whereas:  

( )T x A x b

 

The iteration method is:  
1

1n n n nx x T x T x . 

Herein, T x

 

is a componentwise derivative of T x

 

with respect to the unknowns, such 
that the following ( 3)m n

 

matrix arises. 
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1 1 1 1 1

1 1 1 1 1 1
1 1

2 1 2 1
1 1 2 1

1 1

1 1
1 1 1 1

1 1

. . .

. .

. . .

n
n

n

m m m n
m m n

n

f p f p f p
w w f p w f p

p x p y p y

f p f p
w w f p

p x p yT x

f p f p f p
w w f p w f p

p x p y p y

 

The derivation of the natural element coordinates with respect to the cartesian coordinates 
(Milbradt 2005) is computationally expensive. 

In order to avoid the determination of the inverse matrix, the linear system of equations 

n nT x x T x

 

is solved instead. It has exactly one solution, if ( 3)m n

 

and the matrix 
is not singular. It has more solutions, if ( 3)m n  or rows are linear dependent.  

TRIANGLE 

The scenario, shown below, is the easiest 2d possibility and is used to illustrate the method. 
The task is to find one quadrature point. The polyhedron used is a triangle with linear 
interpolation functions, hence 1n

 

and 3m . Three vertices deliver three linear 
interpolation functions. The resulting system of equation has exactly one solution. The used 
triangle 

 

has the vertices 1 0,0vertex , 2 1,0vertex , 3 0,1vertex

 

and the volume 

of 0.5 . 
Figure 9: Interpolation functions 1f , 2f  and 3f

 

In contrast to all other polyhedrons simplexes are advantageous, since the derivation of the 
interpolation functions of order 1 are constant in one direction all over the simplex. This 
simplifies the Newton method. The starting point of the iteration is the point 1 0.2,0.2p

 

with the weight 1w . The solution of this problem is well known in literature with the point 
1 1

3 3,p  and weight 1w .  
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The following calculation steps lead to this solution:  

1 11 1 1 1
6 2

1 1
6 22 1 1 2

1 1
6 2

3 1 1 3

: 0.6 : 0.2666

: 0.2 : 0.1333

0.2 : 0.1333:

f p w f

T x A x b f p w f

f p w f

. 

Two edges of the triangle are parallel to the cartesian coordinate axes. This and the fact that 
these edges have the length of one lead to derivations of -1/1 and the following derivation 
matrix: 

1 1 0.6

1 0 0.2

0 1 0.2

T x

 

0.133

0.133

0

x

 

1
3

1
31 0

0.2 0.133

0.2 0.133

1 0 1

x x x . 

The Newton method converged for this trivial test case in one step. 

STRICT REGULAR POLYHEDRON 

The objective is to find quadrature points for arbitrary polyhedrons. A first step is done, 
when points are found for strict regular polyhedrons. These are polyhedrons where each edge 
has the same length and each facet consists of the same number of points. One of the 
questions is how many quadrature points are necessary to integrate the used functions 
exactly. 

The edge oriented hierarchical interpolation functions of order 3 may not be completely 
cubical; however they are suitable for the p-version. With regard to Newton method they are 
advantageous, because the resulting system of equation has always exactly one solution. 

Example hexahedron:  

6 vertices 

 

6 interpolation functions of order 1  

6 edges 

 

6 hierarchical functions of order 2    

6 hierarchical functions of order 3  

 

18 equations 

Figure 10: Quadrature points on hexahedron 
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Hence, six points are necessary to compute one solution. When the number of points is 
determined, it is most important to choose a good starting position for them, because only 
suitable starting positions will deliver a solution. Naturally, the rotation symmetry of the 
polyhedron is used. It has been shown that a position on the virtual line between the vertices 
and the barycenter is a suitable starting point and all points have the same weight of 1

6w . 
Interestingly, the result showed that two sets of points are possible for the quadrature points. 

The potential of the points on the virtual line can be calculated and are shown in the 
following picture for a triangle, quadrangle, hexahedron and a decahedron. Of special interest 
are the points of minimum. 

Figure 11: Potential of quadrature points 

Two sets of points start with the five angle element and seem to be found afterwards in all 
elements. The quadrature points can be found in 3d as well. In that case, the derivate with 
respect to the z- coordinate has to be added with the Newton method.  

Figure 12: Quadrature points in 3d 

Figure 12 shows quadrature points for a tetrahedron and a dodecahedron, where two sets of 
points are possible as well. 

CONCLUSION AND OUTLOOK 

Hierarchical edge oriented interpolation functions were introduced, which are suitable for the 
approximation of partial differential equations within the finite element method. The 
differentiation and integration of such interpolation functions is essential for the application 
of the FEM approximation. A numerical integration, the Riemann integral, was introduced on 
the base of a simplex decomposition. For this reason, a minimal barycentric simplecial 
decomposition was established, which could be arbitrarily refined by longest side refinement. 
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With this numerical integration, it was possible to find quadrature points on strict regular 
polyhedrons in 2d and 3d. It is expected that with the analysis of these results and further 
investigations, it may be possible to find quadrature points for all convex polyhedrons. First 
applications have shown that the quadrature points lead to a more efficient realisation of 
finite element approximation on polyhedral decompositions.  
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