Abstract

In this paper a fuzzy Digital Bathymetric Model is presentad well as the corre-
sponding methods of analysis. The tolerance of the meagimstruments, the spatial
and temporal densities of the measured data, the used nsathimderpolation and the
morphologic and morphodymanic characteristics of the eoe@sponding to the data
set are the sources of uncertainty. These sources of umtgrése encapsulated to
construct fuzzy numbers that represent the data. The pabdity is shown on bathy-
metric data sets that cover the offshore area of the islahdrgeoog off the German
coast of the north sea. Spatial-temporal fuzzy interpatatind analysis are shown
to extend spatial-temporal interpolation to model the rmogynamic processes in a
more comprehensive way.
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Digital Bathymetric Model, morphodynamics.

1 Introduction

Basic data together with its corresponding procedures gatial-temporal interpo-
lation constitutes a new definition of a Digital Bathymetkiodel. This definition
provides a platform for new methods of analysis of largeesocabrphodynamic pro-
cesses.

However, spatial and temporal inconsistency of measurtsmeraddition to the
uncertainty induced by the imprecision of measuring imagnts result in a lack of
knowledge and uncertainty about the basic data, which ghmkeflected on in the
result of the analysis of the morphodynamic processes. dderethe method of in-
terpolation introduces extra uncertainty in the resuliingital Bathymetric Model.
The adoption of a fuzzy approach, that takes this infornmatito account, addresses



directly this uncertainty and vagueness in the Digital Batbtric Model and the sub-
sequent analysis of morphodynamics, see Figure 1.

In [3] an object-oriented database-supported Digital Beubtric Model with the
associated interpretation rules was presented. Spatrgddral interpolation methods
and the optimization of the interpolation algorithms to tl@ennon homogeneously
distributed spatial and temporal measurements were disdudifferent procedures
for a more adequate analysis of morphodynamics were tested.

This paper elaborates the uncertainty associated withitfiggDBathymetric Model
proposed in [3] and discusses how this uncertainty can lepocated in the model.
The tolerance of the measuring instruments, the spatiateangoral densities of the
measured data, the used methods for interpolation and dmejacal and morphody-
manic characteristics of the area corresponding to thesgdtzre the sources of uncer-
tainty. These different sources of uncertainty and imgeueéss are considered here
to build a fuzzy Digital Bathymetric Model.

In the next section the sources of uncertainty in the proogssilding a spatial-
temporal Digital Bathymetric Model are presented. The tmcsion of fuzzy num-
bers from the sources of uncertainty is introduced in se@idSection 4 is denoted to
fuzzy interpolations. The different cases of fuzzy intégtion of measured data are
discussed there. The fuzzy Digital Bathymetric Model incgpand time is introduced
in section 5. In section 6 the possible techniques of armtyfsnorphodynamics, that
are presented in [3], and the one adopted here are highlightee proposed Digital
Bathymetric Model has been implemented and the practitatslverified on bathy-
metric data sets in section 7. A conclusion and an outlookisiclered in the last
section.

The theory of fuzzy sets and fuzzy numbers is not subjectisflper, although
a basic knowledge about this theory is a prerequisite fothtbeough understanding
of the text. For detailed treatment of the subject the refezs [1] and [2] are rec-
ommended. Throughout this paper any symbol with a tilde epbw instancey,
refers to a fuzzy number or to a resulting fuzzy number in edsefuzzy function,
for example f(z). Otherwise the symbols refer to crisp real numbers.
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Figure 1: Sources of uncertainty and impreciseness.



2 Available Information and Sources of Uncertainty

Measurement data resulting from several surveying campaige the basic data sets
that are used in building Digital Bathymetric Models. Thetfthat these measure-
ments are taken at discrete, distributed points in time g@ades reduces the actual
state of the measured continuous bathymetry. This intreslan uncertainty about
the resulting bathymetric model.

The inadequate and imprecise representation of the sea iitoaddition to the
genuine impreciseness in the basic data resulting fromrseand inaccuracy of the
acquisition method increases, if neglected, the uncéytairthe model.

Bathymetric models are based on data sets and the assdoiatgublation proce-
dures. The assumption that the function resulting from tierpolation procedure
represents the real morphology of the sea bed is flawed watht gincertainty.

The information available besides the actual basic dataagie listed as follows:

1. the tolerance of the data acquisition technique,
2. the fuzziness induced by the interpolation,
3. the spatial and temporal densities of the measured data, a

4. the morphologic and morphodynamic characteristics ®ffea corresponding
to the data set

Based only on the basic data set, while neglecting the irdion mentioned above,
one can build a precise but uncertain model. In order to dserthe uncertainty in the
model one must incorporate these neglected pieces of iatocymin the bathymetric
model. Carrying all the information content available ote@the analysis stage en-
ables making more certain end conclusions about the marglwothanges of the sea
floor.

3 From the Sources of Uncertainty to Fuzzy Numbers

The none traditional approach of fuzzy theory to handlirg tincertainty of infor-
mation is followed here to model the bathymetry of the searfldeuzzy numbers
are suitable for conglomerating all the available inforimrain one entity and at the
same time reflecting its uncertainty. The basic notion reangshere is the degree of
presumption. The degree of presumption takes values bethaed1. A fuzzy num-
ber may be constructed depending on the degree of presunytit least modified
by altering the degree of presumption for evergut of the fuzzy number. Thereby,
all the mentioned different kinds of uncertainty can be acted for. Every aspect
of the sources of uncertainty will be discussed here seggrédr more clarity and
understanding.



3.1 Thetolerance of the data acquisition technique

See floor surveying campaigns are usually conducted byreliffegovernmental and
non-governmental research institutions. Therefore, mi@clyniques are employed to
collect information about the sea floor topography. Thesa dequisition techniques
vary from single-beam, multi-beam and fan sonar to lasenrsog. Every single
technique has different sources of uncertainty and diftaneys to handle these un-
certainties. Representing the resulting information byzzy number accounts for the
kind of uncertainty induced by applying the different teicfues in a clear and consis-
tent manner. It makes it possible to take the other uncei¢aimduced in the process
of building the Digital Bathymetric Model into account in aore comprehensible
way.

The displayed value of a measuring instrument, that can $nasd by a random
variable, is generally not accurately ascertained. Thbadyiity distribution function
of the random variable describes the measured value appatedy or vaguely. A
simple triangular distribution, that appoximates the finear unknown distribution
function, is assumed. Therefore, the spam of the distobufiinction is given the
degree of presumption of zero and the displayed value isghedegree of presump-
tion of one. In between itis linearly interpolated to give tonstructed fuzzy number.
The uncertainty about the measured data is, thereby, Beddoy a fuzzy number, see
Figure 2. Uncertainty and impreciseness may well be in th@nmation about the
depth as well as the location.
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Figure 2: The fuzzy number representing the uncertaintyeasared data

3.2 TheFuzzinessinduced by the interpolation

The set of data that makes a specific interpolating funcsaegarded as an incom-
plete information item. Interpolation methods are usedatoegtotally unknown piece
of information from this incompletely known informatiorein. In order to reduce the
induced uncertainty about the interpolated value, a fuamntjfication of it is con-
ducted. The fuzzy quantification procedure is demonstraetie basis of coordinate
interpolation, see Figure 3. Let andz, be two pieces of information, each repre-



senting a specific location on theaxis. Considering the region betweenandz, as
unknown, we could linearly interpolate the unknown locatio(z; < = < x,) easily.
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Figure 3: Coordinate interpolation.

The interpolating function is given as
2
E:ngbl(:p) (1)
=1

Nevertheless, having onhy;, x» and the interpolation method as an information
item to describe the whole intervat;, x| makes this information incomplete and
induces an amount of uncertainty.

The fuzzy quantification of the interpolated value is giveraduzzy number
T ={(& n(§)|€ € R, u(§) € [w1, 2] — [0,1]} (2)

The presumption function is given in quasi-LR-representatsee Figure 4. That
means the function is divided into a left function and a rigimiction and given as
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Figure 4: Quasi-LR-representation of a fuzzy number.

The left function is given as
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and the right function is given as
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The values ofy;, and¢y are given by the basis functions and¢,, respectively.

Using the suggested quantification to interpolate the doatdz betweenr; = 0
andz, = 1 gives the fuzzy numbers shown in Figure Scat 0.0 ,z = 0.25 ,2 = 0.5
2z = 0.75andz = 1.0.

Figure 5: The interpolated fuzzy numbersrat= 0.0 ,x = 0.25 ,x = 0.5 ,x = 0.75
andz = 1.0 from left to right respectively.

Describing the sought information x as a fuzzy numbgewhich is based on the
degrees of presumption, increases the certainty abountigolated value. This ex-
ploits all the used information content explicitly, whichatherwise represented only
implicitly in the interpolating function. This procedureust be slightly modified in
accordance with the applied interpolation method. Howeherbasic idea suggested
here is generally valid.

3.3 Thedatadensity and the characteristics of theregion

The degrees of presumption of the constructed fuzzy numdorete modified by a
Characteristic-Density Factor. This factor expressesrf@mation content of the
association between the characteristics of the area ututy and the density of the
measured data that cover this area. One has to differebgate=en two cases. The
first one is the morphologic characteristic associated thighspatial density and the
second one is the morphodynamic characteristic associatiethe temporal density.
This association is essential, because having only theitgerfsthe data does not
justify the attempt to modify the degrees of presumptionaly@n connection with
the characteristic of the area is this attempt plausible.

The Characteristic-Density Factor influences the quaatiba of the fuzziness.
This influence can be demonstrated in decreasing or inag#se precision without
affecting the uncertainty about the modified informatiotuea This effect can be
done by using a fuzzy modification operator on the fuzzy numbpresenting the
fuzzy value.



mod[p(§)] = p™(€) (6)

wherem is the Characteristic-Density factor.
Themorphological Characteristicspatial Density factorn, could be given as

my = densityl9red =@l (7)
Themorphodynamic Characteristictemporal Density factorn, could be given as
my = density!972¢=®) (8)

A suggested density function is given as

density = Z D;(p) 9)
i=1
and
Di <p) — efdistance(ppi)Q (10)

wherep; are the sampling points.

4  Fuzzy Interpolations

Considering a set of crisp data, such that at various pairntsere is a crisp informa-
tion f(z;), the interpolation of such discrete crisp data in terms tiresly simple
functions is well-grounded. The interpolation methodsduaee generally based on
the simple form of an interpolation function

F@)=>" filw) - ¢i(x) (11)
i=1
where the basis functiop;(x) satisfies the interpolation condition:
1 for k=1
(4) = 12
#il@) {0 for k#i 12)

A more general and systematic view of the interpolation mestthat cover inter-
polating discrete fuzzy data is required. In the followigif sorts of problems are
distinguished. First of all the interpolation problem otalavith fuzzy depth at a crisp
location is presented. It is then followed by the problemrdérpolating data with
crisp depth and fuzzy location. The next interpolation peobis one in which the
depth as well as the location are fuzzy. The last problemepttesl here deals with
interpolating data with crisp depth at a crisp location nigkinto consideration the
fuzziness induced by the interpolation method itself.



1. The interpolation problem of data with fuzzy depth at agfocation

In this case imprecise and uncertain depflﬁsi) are given at crisp locations.
The used basis functions are crisp functions here.

:Zﬁmwm> (13)

Figure 6 shows a one-dimensional fuzzy linear interpotatibdata with crisp
locationsz; andz, and fuzzy interpolated quantitigis(x;) and f5 (x5 ), respec-
tively.
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Figure 6: Fuzzy interpolation of data with crisp locatiomslduzzy quantities.

2. The interpolation problem of data with crisp depth at ajubcation

Here the fuzziness of the interpolant results from the imigeness and uncer-
tainty in the given locations; , whereas the quantitie§(z;) at z; are crisp.
The resulting basis functions are fuzzy functignér)

=Zm@@m> (14)

Figure 7 shows a one-dimensional fuzzy linear interpotatibdata with fuzzy
locationsz; andz, and the respective crisp interpolated quantifigs;) and

fa(Z2).
3. The interpolation problem of data with fuzzy depth at azfulbcation

In the case where the impreciseness and uncertainty arehritimlocations;
and in the quantitieg;(z;) the used basis functions are fuzzy, too. The resulting
fuzziness in the interpolating function is the overlappofthe fuzziness in both
the location and the interpolated quantity.

=Zﬂ@@m> (15)

Figure 8 shows a one-dimensional fuzzy linear interpotatibdata with fuzzy
locationsz; andz, and fuzzy interpolated quantltlg%(xl) and f2(x2)



A I‘-é }‘()NC) A I&
%) . fa(5) /
fl(fl) ° fl(fl)
= - - -
X X, X X X, X

HE | e F
o ’ o /
]71()51) * fl(fl)I

> I -

Figure 8: Fuzzy interpolation of data with fuzzy locatiomslduzzy quantities.

4.

The interpolation problem of data with crisp depth at agtocation taking into
consideration the fuzziness induced by the interpolatseifi

As mentioned above the uncertainty induced by the intetjpplanethod can be
reduced by quantifying the fuzziness and the constructirg fazzy number.
The Characteristic-Density Factor can be used to modifyréiselting fuzzy
number to consider the density of the used data set and thaotbastics of the
studied region.

Here, considering the locations and the correspondingtdigsnas crisp data
(x;, fi(x;)) the basis functions used to build the interpolating funttee fuzzy
functions¢(Z(x)), which depend ofi(z). The functionz(z) maps every: to
a fuzzy number that quantifies the fuzziness and hence thertangty induced
by the interpolation method.

[OEDIHENRACE) (16)

Figure 9 shows a one-dimensional fuzzy linear interpoteticcrisp datd 1, f1(z1))
and(xq, f2(z2)). This interpolant takes the fuzziness induced by the ilerp
tion method into account.

Each of the first three problems gives, if combined with thetioone, an extra
special fuzzy interpolation problem. Regarding the firs¢ipolation problem
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Figure 9: Fuzzy linear interpolation of crisp data.

with fuzzy quantities and crisp locations and introducing tuzziness induced
by the interpolation , the interpolating function is given a

= Zﬁ(‘”") - §il@(x)) (17)

Figure 10 shows a one-dimensional fuzzy interpolation ¢ ath crisp loca-
tions and fuzzy interpolated quantities;, f,(z1)) and(z», f»(z2)) considering
the fuzziness induced by the interpolant.
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10: Fuzzy interpolation considering the fuzzineskiced by the interpolant.

combination of the second and third interpolation pFobbf fuzzy data with

the interpolation problem of the fuzziness induced by therpolation method gives a
fuzzy interpolant of type 2. This means that the resultirzjunumbers are of type 2.
Fuzzy numbers of type 2 express the fuzziness in the presumstelf by considering
degrees of presumptions as fuzzy numbers.

The

resulting interpolant for the case of fuzzy locatiansand crisp interpolated

quantitiesf;(z;) is given as

n

F@) =S 5@ - dul3a, 32, 72)) (18)

i=1
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The interpolant for the case of fuzzy data with fuzzy locasio; and fuzzy quan-
tities f;(z;) is given as

T@) = 3 Fi@) - (a1, 2) (19

5 Fuzzy Digital Bathymetric Model in Spaceand Time

Representing the Digital Bathymetric Model by a continufwsction z(x,y,t) in
space and time describes the evolution of the sea floor awerdonsistently. In [3] the
Digital Bathymetric Model was redefined as a collection afcdéte survey points and
the associated interpolation and interpretation proaiurhis definition is adapted
here to build the fuzzy Digital Bathymetric Model, althoutjle interpolation methods
used are fuzzy.

Two categories of interpolation methods are used here 1d the Digital Bathy-
metric Model. The first one are the mesh-free interpolati@thmds, for example the
inverse distance interpolation that is well known as Shetpaterpolation. The sec-
ond one are the mesh-based interpolation methods, whidtedive studied area into
triangles or rectangles. In addition to the spatial inte&apons temporal interpola-
tions were introduced in [3] and are adapted here, too. A tealfinear interpolation
between two spatially interpolated depths from the diyeictitime previous and sub-
sequent data sets can be conducted. Polynomial or mesimtiegeolation procedures
can be used, should there be extra data sets other than thase idirectly adjacent
data sets. An optimization of the mesh-free interpolati@as wuggested in [3] to re-
duce the resulting effect of smoothing the surface. An ampate circumsphere in
time and space was recommended.

6 Analysisof Morphodynamics

Since the Digital Bathymetric Models were understood asetdimensional conti-
nous interpolating functions of the fora{x, y,t) in space and time many different
procedures for the analysis of the morphodynamics werelalese in [3] taking ad-
vantage of this representation. An inverse finite volume@dore was developed to
compute the sedimentation transport out of the bathymetadel. The morpholog-
ical velocities were introduced to describe the transfdioneof the local structures,
such as the move of tidal channels or the fall of coastal lines

In this paper the analysis of the morphodynamics is resttitd determining the
sedimentation and erosion rates. The other analysis puoeggresented in [3] are
still under development for the case of the fuzzy digital tbggnetric model. The
changing rates of the deptldz/dt) can be determined by using a finite difference
scheme on rays parallel to the time axis and thus areas dbrrasd sedimentation
can be identified.

11



7 Application

The proposed presentation of a fuzzy Digital Bathymetriadglas applied to bathy-

metric data sets that cover the offshore area of the islahdgeoog off the German
coast of the north sea. Regular bathymetric surveys, in iimt@evals of one to two

years, were conducted by the Lower Saxony Water Manage@eastal Defence and
Nature Conservation Agency (NLWKN). The used data acqgarsitechniques were
sonar and laser scanning. The basic data sets, that are ergeatbnsist of a regular
grid of 5 m distance and were resulting from laser scan owey#ars 2002 and 2003.
These data sets are supplied by the (NLWKN) after treatmeehipaocessing which

increases the uncertainty about them.

In this demonstrated application the impreciseness of #p¢hdvalues, the uncer-
tainty induced by the interpolation method, the densityhefdata set and the charac-
teristic of the investigated area are used to build a sp&imaporal fuzzy bathymetric
model. The impreciseness of the location is neglected. fiteggolation procedure
is a fuzzy bilinear interpolation based on the supplied.giitiis model serves as a
basis for further analysis. The fuzzy erosion and sedintiemtaates are identified as
an example of fuzzy analysis of morphodynamics.

Figure 11, 12 and 13 show the fuzzy spatial interpolatiomefdepth in the Spring
of the year 2002. In Figure 11 on the left side the minimum efdlpth distribution
at the presumption level 00(0) is presented. The right picture shows the maximum
of the depth distribution at the presumption level@bj . In Figure 12 on the left side
the minimum of the depth distribution at the presumptiorelef (0.5) is presented.
The right picture shows the maximum of the depth distributid the presumption
level of (0.5) . Figure 13 shows the depth distribution at the presumpgeal of
(1.0).

Figure 11: From left to right the minimum and maximum of thatsgly interpolated
depth distribution in Spring 2002 at0 degree of presumption.

Figure 14, 15 and 16 show the fuzzy spatial interpolatiomefdepth in the Spring
of the year 2003. In Figure 14 on the left side the minimum efdlpth distribution
at the presumption level 00(0) is presented. The right picture shows the maximum
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Figure 12: From left to right the minimum and maximum of thatsuly interpolated
depth distribution in Spring 2002 at5 degree of presumption.

Figure 13: The spatially interpolated depth distributiorSpring 2002 at.0 degree
of presumption.

of the depth distribution at the presumption level@df . In Figure 15 on the left side
the minimum of the depth distribution at the presumptiorelef (0.5) is presented.
The right picture shows the maximum of the depth distributad the presumption
level of (0.5) . Figure 16 shows the depth distribution at the presumpgeal of
(1.0).

Figure 17, 18 and 19 show the fuzzy spatial-temporal inlatfm of the depth in
the late Summer of the year 2002. In Figure 17 on the left didartinimum depth
distribution at the presumption level df.() is presented. The right picture shows the
maximum depth distribution at the presumption level@b) . In Figure 18 on the
left side the minimum depth distribution at the presumptewme! of (0.5) is presented.
The right picture shows the maximum depth distribution atphesumption level of
(0.5) . Figure 19 shows the depth distribution at the presumpéoeal of (1.0).

Figure 20, 21 and 22 show the fuzzy spatial-temporal inlatfm of the depth in
the early Winter of the year 2002. In Figure 20 on the left sltee minimum depth
distribution at the presumption level df.() is presented. The right picture shows the
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Figure 14: From left to right the minimum and maximum of thatsuly interpolated
depth distribution in Spring 2003 a1t0 degree of presumption.
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Figure 15: From left to right the minimum and maximum of thatsgly interpolated
depth distribution in Spring 2003 at5 degree of presumption.
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Figure 16: The spatially interpolated depth distributiorSpring 2003 at .0 degree
of presumption.
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Figure 17: From left to right the minimum and maximum of thatsly and tempo-
rally interpolated depth distribution in late Summer 200@ @ degree of presumption.
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Figure 18: From left to right the minimum and maximum of thatsgly and tempo-
rally interpolated depth distribution in late Summer 200@ adegree of presumption.

Figure 19: The spatially and temporally interpolated dejiskribution in late Summer
2002 atl.0 degree of presumption.
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maximum depth distribution at the presumption level @) . In Figure 21 on the
left side the minimum depth distribution at the presumpteme| of (0.5) is presented.
The right picture shows the maximum depth distribution atphesumption level of
(0.5) . Figure 22 shows the depth distribution at the presumpéeeal of (1.0).
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Figure 20: From left to right the minimum and maximum of thatsgly and tempo-
rally interpolated depth distribution in early Winter 208X2.0 degree of presumption.

Figure 21: From left to right the minimum and maximum of thatsgly and tempo-
rally interpolated depth distribution in early Winter 208X2.5 degree of presumption.

Figure 23, 24 and 25 show the resulting fuzzy erosion andvsatiation rates
between the years 2002 and 2003. In Figure 23 on the left sBElentnimum depth
change at the presumption level of() is presented. The right picture shows the
maximum depth change at the presumption levelodf)(. In Figure 24 on the left
side the minimum depth change at the presumption level.6j (s presented. The
right picture shows the maximum depth change at the presomfavel of (.5) .
Figure 25 shows the depth change at the presumption levél®f (
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Figure 22: The spatially and temporally interpolated dejkribution in early Winter
2002 atl.0 degree of presumption.
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Figure 23: From left to right the minimum and maximum depthrae ab.0 degree
of presumption.
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Figure 24: From left to right the minimum and maximum depthrae ab.5 degree
of presumption.
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Figure 25: The depth changelab degree of presumption.

8 Conclusion and Outlook

In this paper a fuzzy Digital Bathymetric Model was introddc The sources of un-
certainty in the process of building a spatial-temporali@ig@athymetric Model were

presented. The construction of fuzzy numbers from the sswtuncertainty was dis-
cussed. The different cases of fuzzy interpolation werebgestiof discussion. The
possible techniques of analysis of morphodynamics and nieeadopted here were
highlighted. The proposed Digital Bathymetric Model hasrbenplemented and the
practicability was shown on bathymetric data sets that cthe offshore area of the
island of Langeoog off the German coast of the north sea.

Spatial-temporal fuzzy interpolation and analysis arexshio extend spatial-temporal
interpolation to model the morphodynamic processes in armmomprehensive way.
They guarantee a complete interpretation of all availaiflemation on the measured
basic data. For instance, one can derive at any arbitrang ptiime a consistent fuzzy
Digital Bathymetric Model, with which the deduced uncemtgiis quantified at every
location. The rates of erosion and sedimentation with thesociated uncertainty can
then be quantified in a conceivable way.

However, the practical challenge of the fuzzy spatial-terapinterpolations must
be well elaborated and improved. The techniques of anabfsieorphodynamics
introduced in [3] must be expanded to cover the fuzzy case.
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