
Abstract

In this paper a fuzzy Digital Bathymetric Model is presented, as well as the corre-
sponding methods of analysis. The tolerance of the measuring instruments, the spatial
and temporal densities of the measured data, the used methods of interpolation and the
morphologic and morphodymanic characteristics of the areacorresponding to the data
set are the sources of uncertainty. These sources of uncertainty are encapsulated to
construct fuzzy numbers that represent the data. The practicability is shown on bathy-
metric data sets that cover the offshore area of the island ofLangeoog off the German
coast of the north sea. Spatial-temporal fuzzy interpolation and analysis are shown
to extend spatial-temporal interpolation to model the morphodynamic processes in a
more comprehensive way.

Keywords: uncertainty, fuzzy number, spatial-temporal fuzzy interpolation, fuzzy
Digital Bathymetric Model, morphodynamics.

1 Introduction

Basic data together with its corresponding procedures for spatial-temporal interpo-
lation constitutes a new definition of a Digital BathymetricModel. This definition
provides a platform for new methods of analysis of large scale morphodynamic pro-
cesses.

However, spatial and temporal inconsistency of measurements in addition to the
uncertainty induced by the imprecision of measuring instruments result in a lack of
knowledge and uncertainty about the basic data, which should be reflected on in the
result of the analysis of the morphodynamic processes. Moreover, the method of in-
terpolation introduces extra uncertainty in the resultingDigital Bathymetric Model.
The adoption of a fuzzy approach, that takes this information into account, addresses
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directly this uncertainty and vagueness in the Digital Bathymetric Model and the sub-
sequent analysis of morphodynamics, see Figure 1.

In [3] an object-oriented database-supported Digital Bathymetric Model with the
associated interpretation rules was presented. Spatial-temporal interpolation methods
and the optimization of the interpolation algorithms to handle non homogeneously
distributed spatial and temporal measurements were discussed. Different procedures
for a more adequate analysis of morphodynamics were tested.

This paper elaborates the uncertainty associated with the Digital Bathymetric Model
proposed in [3] and discusses how this uncertainty can be incorporated in the model.
The tolerance of the measuring instruments, the spatial andtemporal densities of the
measured data, the used methods for interpolation and the geometrical and morphody-
manic characteristics of the area corresponding to the dataset are the sources of uncer-
tainty. These different sources of uncertainty and impreciseness are considered here
to build a fuzzy Digital Bathymetric Model.

In the next section the sources of uncertainty in the processof building a spatial-
temporal Digital Bathymetric Model are presented. The construction of fuzzy num-
bers from the sources of uncertainty is introduced in section 3. Section 4 is denoted to
fuzzy interpolations. The different cases of fuzzy interpolation of measured data are
discussed there. The fuzzy Digital Bathymetric Model in space and time is introduced
in section 5. In section 6 the possible techniques of analysis of morphodynamics, that
are presented in [3], and the one adopted here are highlighted. The proposed Digital
Bathymetric Model has been implemented and the practicability is verified on bathy-
metric data sets in section 7. A conclusion and an outlook is considered in the last
section.

The theory of fuzzy sets and fuzzy numbers is not subject of this paper, although
a basic knowledge about this theory is a prerequisite for thethorough understanding
of the text. For detailed treatment of the subject the references [1] and [2] are rec-
ommended. Throughout this paper any symbol with a tilde above, for instance,̃x,
refers to a fuzzy number or to a resulting fuzzy number in caseof a fuzzy function,
for example,f̃(x). Otherwise the symbols refer to crisp real numbers.

Figure 1: Sources of uncertainty and impreciseness.
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2 Available Information and Sources of Uncertainty

Measurement data resulting from several surveying campaigns are the basic data sets
that are used in building Digital Bathymetric Models. The fact that these measure-
ments are taken at discrete, distributed points in time and space reduces the actual
state of the measured continuous bathymetry. This introduces an uncertainty about
the resulting bathymetric model.

The inadequate and imprecise representation of the sea floor, in addition to the
genuine impreciseness in the basic data resulting from errors and inaccuracy of the
acquisition method increases, if neglected, the uncertainty in the model.

Bathymetric models are based on data sets and the associatedinterpolation proce-
dures. The assumption that the function resulting from the interpolation procedure
represents the real morphology of the sea bed is flawed with great uncertainty.

The information available besides the actual basic data setmay be listed as follows:

1. the tolerance of the data acquisition technique,

2. the fuzziness induced by the interpolation,

3. the spatial and temporal densities of the measured data, and

4. the morphologic and morphodynamic characteristics of the area corresponding
to the data set

Based only on the basic data set, while neglecting the information mentioned above,
one can build a precise but uncertain model. In order to decrease the uncertainty in the
model one must incorporate these neglected pieces of information in the bathymetric
model. Carrying all the information content available overto the analysis stage en-
ables making more certain end conclusions about the morphologic changes of the sea
floor.

3 From the Sources of Uncertainty to Fuzzy Numbers

The none traditional approach of fuzzy theory to handling the uncertainty of infor-
mation is followed here to model the bathymetry of the sea floor. Fuzzy numbers
are suitable for conglomerating all the available information in one entity and at the
same time reflecting its uncertainty. The basic notion necessary here is the degree of
presumption. The degree of presumption takes values between 0 and1. A fuzzy num-
ber may be constructed depending on the degree of presumption or at least modified
by altering the degree of presumption for everyα-cut of the fuzzy number. Thereby,
all the mentioned different kinds of uncertainty can be accounted for. Every aspect
of the sources of uncertainty will be discussed here separately for more clarity and
understanding.
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3.1 The tolerance of the data acquisition technique

See floor surveying campaigns are usually conducted by different governmental and
non-governmental research institutions. Therefore, manytechniques are employed to
collect information about the sea floor topography. These data acquisition techniques
vary from single-beam, multi-beam and fan sonar to laser scanning. Every single
technique has different sources of uncertainty and different ways to handle these un-
certainties. Representing the resulting information by a fuzzy number accounts for the
kind of uncertainty induced by applying the different techniques in a clear and consis-
tent manner. It makes it possible to take the other uncertainties induced in the process
of building the Digital Bathymetric Model into account in a more comprehensible
way.

The displayed value of a measuring instrument, that can be assumed by a random
variable, is generally not accurately ascertained. The probability distribution function
of the random variable describes the measured value approximately or vaguely. A
simple triangular distribution, that appoximates the non-linear unknown distribution
function, is assumed. Therefore, the spam of the distribution function is given the
degree of presumption of zero and the displayed value is given the degree of presump-
tion of one. In between it is linearly interpolated to give the constructed fuzzy number.
The uncertainty about the measured data is, thereby, described by a fuzzy number, see
Figure 2. Uncertainty and impreciseness may well be in the information about the
depth as well as the location.

Figure 2: The fuzzy number representing the uncertainty in measured data

3.2 The Fuzziness induced by the interpolation

The set of data that makes a specific interpolating function is regarded as an incom-
plete information item. Interpolation methods are used to get a totally unknown piece
of information from this incompletely known information item. In order to reduce the
induced uncertainty about the interpolated value, a fuzzy quantification of it is con-
ducted. The fuzzy quantification procedure is demonstratedon the basis of coordinate
interpolation, see Figure 3. Letx1 andx2 be two pieces of information, each repre-

4



senting a specific location on thex axis. Considering the region betweenx1 andx2 as
unknown, we could linearly interpolate the unknown location x (x1 ≤ x ≤ x2) easily.

Figure 3: Coordinate interpolation.

The interpolating function is given as

x =
2∑

i=1

x · φi(x) (1)

Nevertheless, having onlyx1, x2 and the interpolation method as an information
item to describe the whole interval[x1, x2] makes this information incomplete and
induces an amount of uncertainty.

The fuzzy quantification of the interpolated value is given as a fuzzy number

x̃ = {(ξ, µ(ξ))|ξ ∈ R, µ(ξ) ∈ [x1, x2] → [0, 1]} (2)

The presumption function is given in quasi-LR-representation, see Figure 4. That
means the function is divided into a left function and a rightfunction and given as

µ(ξ) =





L( x−ξ

x−x1

) for x1 ≤ ξ < x

1 for ξ = x

R( ξ−x

x2−x
) for x < ξ ≤ x2

(3)

Figure 4: Quasi-LR-representation of a fuzzy number.

The left function is given as

L(ξ̄) := (1 − ξ̄)αL(1 − φL) + φL ; αL :=
1 − φL

φL

; ξ̄ =
x − ξ

x − x1
(4)
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and the right function is given as

R(ξ̄) := (1 − ξ̄)αR(1 − φR) + φR ; αR :=
1 − φR

φR

; ξ̄ =
ξ − x

x2 − x
(5)

The values ofφL andφR are given by the basis functionsφ1 andφ2, respectively.

Using the suggested quantification to interpolate the coordinatex betweenx1 = 0
andx2 = 1 gives the fuzzy numbers shown in Figure 5 atx = 0.0 ,x = 0.25 ,x = 0.5
,x = 0.75 andx = 1.0.

Figure 5: The interpolated fuzzy numbers atx = 0.0 ,x = 0.25 ,x = 0.5 ,x = 0.75
andx = 1.0 from left to right respectively.

Describing the sought information x as a fuzzy numberx̃, which is based on the
degrees of presumption, increases the certainty about the interpolated value. This ex-
ploits all the used information content explicitly, which is otherwise represented only
implicitly in the interpolating function. This procedure must be slightly modified in
accordance with the applied interpolation method. However, the basic idea suggested
here is generally valid.

3.3 The data density and the characteristics of the region

The degrees of presumption of the constructed fuzzy number can be modified by a
Characteristic-Density Factor. This factor expresses theinformation content of the
association between the characteristics of the area under study and the density of the
measured data that cover this area. One has to differentiatebetween two cases. The
first one is the morphologic characteristic associated withthe spatial density and the
second one is the morphodynamic characteristic associatedwith the temporal density.
This association is essential, because having only the density of the data does not
justify the attempt to modify the degrees of presumptions. Only in connection with
the characteristic of the area is this attempt plausible.

The Characteristic-Density Factor influences the quantification of the fuzziness.
This influence can be demonstrated in decreasing or increasing the precision without
affecting the uncertainty about the modified information value. This effect can be
done by using a fuzzy modification operator on the fuzzy number representing the
fuzzy value.

6



mod[µ(ξ)] = µm(ξ) (6)

wherem is the Characteristic-Density factor.

Themorphological Characteristic-spatial Density factorms could be given as

ms = density|grad z(x,y)| . (7)

Themorphodynamic Characteristic-temporal Density factormt could be given as

mt = density|grad z(t)| . (8)

A suggested density function is given as

density =
n∑

i=1

Di(p) (9)

and
Di(p) = e−distance(p,pi)2 (10)

wherepi are the sampling points.

4 Fuzzy Interpolations

Considering a set of crisp data, such that at various pointsxi there is a crisp informa-
tion f(xi), the interpolation of such discrete crisp data in terms of relatively simple
functions is well-grounded. The interpolation methods used are generally based on
the simple form of an interpolation function

f(x) =
n∑

i=1

fi(xi) · φi(x) (11)

where the basis functionφi(x) satisfies the interpolation condition:

φi(xk) =

{
1 for k = i

0 for k 6= i
(12)

A more general and systematic view of the interpolation methods that cover inter-
polating discrete fuzzy data is required. In the following four sorts of problems are
distinguished. First of all the interpolation problem of data with fuzzy depth at a crisp
location is presented. It is then followed by the problem of interpolating data with
crisp depth and fuzzy location. The next interpolation problem is one in which the
depth as well as the location are fuzzy. The last problem presented here deals with
interpolating data with crisp depth at a crisp location taking into consideration the
fuzziness induced by the interpolation method itself.
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1. The interpolation problem of data with fuzzy depth at a crisp location

In this case imprecise and uncertain depthsf̃i(xi) are given at crisp locationsxi.
The used basis functions are crisp functions here.

f̃(x) =

n∑

i=1

f̃i(xi) · φi(x) (13)

Figure 6 shows a one-dimensional fuzzy linear interpolation of data with crisp
locationsx1 andx2 and fuzzy interpolated quantities̃f1(x1) andf̃2(x2), respec-
tively.

Figure 6: Fuzzy interpolation of data with crisp locations and fuzzy quantities.

2. The interpolation problem of data with crisp depth at a fuzzy location

Here the fuzziness of the interpolant results from the impreciseness and uncer-
tainty in the given locations̃xi , whereas the quantitiesfi(x̃i) at x̃i are crisp.
The resulting basis functions are fuzzy functionsφ̃i(x)

f̃(x) =
n∑

i=1

fi(x̃i) · φ̃i(x) (14)

Figure 7 shows a one-dimensional fuzzy linear interpolation of data with fuzzy
locationsx̃1 and x̃2 and the respective crisp interpolated quantitiesf1(x̃1) and
f2(x̃2).

3. The interpolation problem of data with fuzzy depth at a fuzzy location

In the case where the impreciseness and uncertainty are in both the locations̃xi

and in the quantities̃fi(x̃i) the used basis functions are fuzzy, too. The resulting
fuzziness in the interpolating function is the overlappingof the fuzziness in both
the location and the interpolated quantity.

f̃(x) =

n∑

i=1

f̃i(x̃i) · φ̃i(x) (15)

Figure 8 shows a one-dimensional fuzzy linear interpolation of data with fuzzy
locationsx̃1 andx̃2 and fuzzy interpolated quantities̃f1(x̃1) andf̃2(x̃2).
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Figure 7: Fuzzy interpolation of data with fuzzy locations and crisp quantities.

Figure 8: Fuzzy interpolation of data with fuzzy locations and fuzzy quantities.

4. The interpolation problem of data with crisp depth at a crisp location taking into
consideration the fuzziness induced by the interpolation itself.

As mentioned above the uncertainty induced by the interpolation method can be
reduced by quantifying the fuzziness and the constructing of a fuzzy number.
The Characteristic-Density Factor can be used to modify theresulting fuzzy
number to consider the density of the used data set and the characteristics of the
studied region.

Here, considering the locations and the corresponding quantities as crisp data
(xi, fi(xi)) the basis functions used to build the interpolating function are fuzzy
functionsφ̃(x̃(x)), which depend oñx(x). The functionx̃(x) maps everyx to
a fuzzy number that quantifies the fuzziness and hence the uncertainty induced
by the interpolation method.

f̃(x) =
n∑

i=1

fi(xi) · φ̃i(x̃(x)) (16)

Figure 9 shows a one-dimensional fuzzy linear interpolation of crisp data(x1, f1(x1))
and(x2, f2(x2)). This interpolant takes the fuzziness induced by the interpola-
tion method into account.

Each of the first three problems gives, if combined with the fourth one, an extra
special fuzzy interpolation problem. Regarding the first interpolation problem
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Figure 9: Fuzzy linear interpolation of crisp data.

with fuzzy quantities and crisp locations and introducing the fuzziness induced
by the interpolation , the interpolating function is given as

f̃(x) =

n∑

i=1

f̃i(xi) · φ̃i(x̃(x)) (17)

Figure 10 shows a one-dimensional fuzzy interpolation of data with crisp loca-
tions and fuzzy interpolated quantities(x1, f̃1(x1)) and(x2, f̃2(x2)) considering
the fuzziness induced by the interpolant.

Figure 10: Fuzzy interpolation considering the fuzziness induced by the interpolant.

The combination of the second and third interpolation problem of fuzzy data with
the interpolation problem of the fuzziness induced by the interpolation method gives a
fuzzy interpolant of type 2. This means that the resulting fuzzy numbers are of type 2.
Fuzzy numbers of type 2 express the fuzziness in the presumption itself by considering
degrees of presumptions as fuzzy numbers.

The resulting interpolant for the case of fuzzy locationsx̃i and crisp interpolated
quantitiesfi(x̃i) is given as

˜̃
f(x) =

n∑

i=1

fi(x̃i) ·
˜̃
φi(˜̃x(x, x̃1, x̃2)) (18)
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The interpolant for the case of fuzzy data with fuzzy locations x̃i and fuzzy quan-
tities f̃i(x̃i) is given as

˜̃
f(x) =

n∑

i=1

f̃i(x̃i) ·
˜̃
φi(˜̃x(x, x̃1, x̃2)) (19)

5 Fuzzy Digital Bathymetric Model in Space and Time

Representing the Digital Bathymetric Model by a continuousfunction z(x, y, t) in
space and time describes the evolution of the sea floor over time consistently. In [3] the
Digital Bathymetric Model was redefined as a collection of discrete survey points and
the associated interpolation and interpretation procedures. This definition is adapted
here to build the fuzzy Digital Bathymetric Model, althoughthe interpolation methods
used are fuzzy.

Two categories of interpolation methods are used here to build the Digital Bathy-
metric Model. The first one are the mesh-free interpolation methods, for example the
inverse distance interpolation that is well known as Shepard Interpolation. The sec-
ond one are the mesh-based interpolation methods, which divide the studied area into
triangles or rectangles. In addition to the spatial interpolations temporal interpola-
tions were introduced in [3] and are adapted here, too. A temporal linear interpolation
between two spatially interpolated depths from the directly in time previous and sub-
sequent data sets can be conducted. Polynomial or mesh-freeinterpolation procedures
can be used, should there be extra data sets other than these in time directly adjacent
data sets. An optimization of the mesh-free interpolation was suggested in [3] to re-
duce the resulting effect of smoothing the surface. An appropriate circumsphere in
time and space was recommended.

6 Analysis of Morphodynamics

Since the Digital Bathymetric Models were understood as three-dimensional conti-
nous interpolating functions of the formz(x, y, t) in space and time many different
procedures for the analysis of the morphodynamics were developed in [3] taking ad-
vantage of this representation. An inverse finite volume procedure was developed to
compute the sedimentation transport out of the bathymetricmodel. The morpholog-
ical velocities were introduced to describe the transformation of the local structures,
such as the move of tidal channels or the fall of coastal lines.

In this paper the analysis of the morphodynamics is restricted to determining the
sedimentation and erosion rates. The other analysis procedures presented in [3] are
still under development for the case of the fuzzy digital baythymetric model. The
changing rates of the depth(dz/dt) can be determined by using a finite difference
scheme on rays parallel to the time axis and thus areas of erosion and sedimentation
can be identified.
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7 Application

The proposed presentation of a fuzzy Digital Bathymetric Model is applied to bathy-
metric data sets that cover the offshore area of the island ofLangeoog off the German
coast of the north sea. Regular bathymetric surveys, in timeintervals of one to two
years, were conducted by the Lower Saxony Water Management,Coastal Defence and
Nature Conservation Agency (NLWKN). The used data acquisition techniques were
sonar and laser scanning. The basic data sets, that are used here, consist of a regular
grid of 5 m distance and were resulting from laser scan over the years 2002 and 2003.
These data sets are supplied by the (NLWKN) after treatment and processing which
increases the uncertainty about them.

In this demonstrated application the impreciseness of the depth values, the uncer-
tainty induced by the interpolation method, the density of the data set and the charac-
teristic of the investigated area are used to build a spatialtemporal fuzzy bathymetric
model. The impreciseness of the location is neglected. The interpolation procedure
is a fuzzy bilinear interpolation based on the supplied grid. This model serves as a
basis for further analysis. The fuzzy erosion and sedimentation rates are identified as
an example of fuzzy analysis of morphodynamics.

Figure 11, 12 and 13 show the fuzzy spatial interpolation of the depth in the Spring
of the year 2002. In Figure 11 on the left side the minimum of the depth distribution
at the presumption level of (0.0) is presented. The right picture shows the maximum
of the depth distribution at the presumption level of (0.0) . In Figure 12 on the left side
the minimum of the depth distribution at the presumption level of (0.5) is presented.
The right picture shows the maximum of the depth distribution at the presumption
level of (0.5) . Figure 13 shows the depth distribution at the presumptionlevel of
(1.0).

Figure 11: From left to right the minimum and maximum of the spatially interpolated
depth distribution in Spring 2002 at0.0 degree of presumption.

Figure 14, 15 and 16 show the fuzzy spatial interpolation of the depth in the Spring
of the year 2003. In Figure 14 on the left side the minimum of the depth distribution
at the presumption level of (0.0) is presented. The right picture shows the maximum
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Figure 12: From left to right the minimum and maximum of the spatially interpolated
depth distribution in Spring 2002 at0.5 degree of presumption.

Figure 13: The spatially interpolated depth distribution in Spring 2002 at1.0 degree
of presumption.

of the depth distribution at the presumption level of (0.0) . In Figure 15 on the left side
the minimum of the depth distribution at the presumption level of (0.5) is presented.
The right picture shows the maximum of the depth distribution at the presumption
level of (0.5) . Figure 16 shows the depth distribution at the presumptionlevel of
(1.0).

Figure 17, 18 and 19 show the fuzzy spatial-temporal interpolation of the depth in
the late Summer of the year 2002. In Figure 17 on the left side the minimum depth
distribution at the presumption level of (0.0) is presented. The right picture shows the
maximum depth distribution at the presumption level of (0.0) . In Figure 18 on the
left side the minimum depth distribution at the presumptionlevel of (0.5) is presented.
The right picture shows the maximum depth distribution at the presumption level of
(0.5) . Figure 19 shows the depth distribution at the presumptionlevel of (1.0).

Figure 20, 21 and 22 show the fuzzy spatial-temporal interpolation of the depth in
the early Winter of the year 2002. In Figure 20 on the left sidethe minimum depth
distribution at the presumption level of (0.0) is presented. The right picture shows the
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Figure 14: From left to right the minimum and maximum of the spatially interpolated
depth distribution in Spring 2003 at0.0 degree of presumption.

Figure 15: From left to right the minimum and maximum of the spatially interpolated
depth distribution in Spring 2003 at0.5 degree of presumption.

Figure 16: The spatially interpolated depth distribution in Spring 2003 at1.0 degree
of presumption.
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Figure 17: From left to right the minimum and maximum of the spatially and tempo-
rally interpolated depth distribution in late Summer 2002 at 0.0 degree of presumption.

Figure 18: From left to right the minimum and maximum of the spatially and tempo-
rally interpolated depth distribution in late Summer 2002 at 0.5 degree of presumption.

Figure 19: The spatially and temporally interpolated depthdistribution in late Summer
2002 at1.0 degree of presumption.
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maximum depth distribution at the presumption level of (0.0) . In Figure 21 on the
left side the minimum depth distribution at the presumptionlevel of (0.5) is presented.
The right picture shows the maximum depth distribution at the presumption level of
(0.5) . Figure 22 shows the depth distribution at the presumptionlevel of (1.0).

Figure 20: From left to right the minimum and maximum of the spatially and tempo-
rally interpolated depth distribution in early Winter 2002at0.0 degree of presumption.

Figure 21: From left to right the minimum and maximum of the spatially and tempo-
rally interpolated depth distribution in early Winter 2002at0.5 degree of presumption.

Figure 23, 24 and 25 show the resulting fuzzy erosion and sedimentation rates
between the years 2002 and 2003. In Figure 23 on the left side the minimum depth
change at the presumption level of (0.0) is presented. The right picture shows the
maximum depth change at the presumption level of (0.0) . In Figure 24 on the left
side the minimum depth change at the presumption level of (0.5) is presented. The
right picture shows the maximum depth change at the presumption level of (0.5) .
Figure 25 shows the depth change at the presumption level of (1.0).
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Figure 22: The spatially and temporally interpolated depthdistribution in early Winter
2002 at1.0 degree of presumption.

Figure 23: From left to right the minimum and maximum depth change at0.0 degree
of presumption.

Figure 24: From left to right the minimum and maximum depth change at0.5 degree
of presumption.
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Figure 25: The depth change at1.0 degree of presumption.

8 Conclusion and Outlook

In this paper a fuzzy Digital Bathymetric Model was introduced. The sources of un-
certainty in the process of building a spatial-temporal Digital Bathymetric Model were
presented. The construction of fuzzy numbers from the sources of uncertainty was dis-
cussed. The different cases of fuzzy interpolation were a subject of discussion. The
possible techniques of analysis of morphodynamics and the one adopted here were
highlighted. The proposed Digital Bathymetric Model has been implemented and the
practicability was shown on bathymetric data sets that cover the offshore area of the
island of Langeoog off the German coast of the north sea.

Spatial-temporal fuzzy interpolation and analysis are shown to extend spatial-temporal
interpolation to model the morphodynamic processes in a more comprehensive way.
They guarantee a complete interpretation of all available information on the measured
basic data. For instance, one can derive at any arbitrary point of time a consistent fuzzy
Digital Bathymetric Model, with which the deduced uncertainty is quantified at every
location. The rates of erosion and sedimentation with theirassociated uncertainty can
then be quantified in a conceivable way.

However, the practical challenge of the fuzzy spatial-temporal interpolations must
be well elaborated and improved. The techniques of analysisof morphodynamics
introduced in [3] must be expanded to cover the fuzzy case.
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