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1 INTRODUCTION

To control and influence traffic flows on highways detector equipments and variablemess-
age sign systems have been installed in the recent years. Traffic control systems are based
on the idea to avoid traffic instabilities and to homogenize the traffic flow in such a way
that the risk of accidents is minimized and the mean velocity or the traffic flow is maxi-
mized. Typical controlmeasures are speed limitations, no-passingzones, keep-in-lane rec-
ommendations, on-ramp-regulations or alternative route recommendations. The traffic
control systems need the evaluation of the measured traffic data, a short time prediction
of the traffic situation and traffic simulations for possible controlmeasures without signifi-
cant time delay.With the increasingneed for optimized trafficmeasures, the development
of fast and robust numerical methods for traffic simulations with adaption to measured
traffic data becomes more and more important.

Traffic measurements are usually carried out at fixed intersections of a highway using in-
stalled detector equipments. The traffic flow, the mean velocity and the traffic density are
calculated directly from the detector data. It is not ensured that the calculated traffic data
particularly for jam situations and ramp flows satisfy the condition of conservation of the
number of vehicles in the traffic stream. This is, however, a basic assumption fornumerical
traffic simulations with adaptions to measured traffic data.

Awide range ofdifferentmathematicalmodels of traffic flowhas beendevelopedby scien-
tist frommathematics, physics and engineering. There are twomaindirections of develop-
ment: microscopic and macroscopic traffic modelling. In microscopic modelling, the mo-
tion of each vehicle of a traffic stream is considered depending on the motion of the
preceding vehicle and the individual driving behaviour can be taken into account. In ma-
croscopic modelling, the motion of a traffic stream is described in analogy to fluid dy-
namics by partial differential equations which have to be solved numerically. The basic
microscopic and macroscopic traffic models are single-lane models which are able to de-
scribe the spectrum of observed phenomena in real traffic on highways. The key problem
in practical applications is the identification of model parameters which depend signifi-
cantly on the traffic scenario.
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2 TRAFFIC MEASUREMENTS

A traffic stream of a highway consists of partial traffic streams on the lanes of the highway.
Using detector equipments at fixed intersections of the highway, the traffic flow and the
mean velocity are measured within a certain time interval. These local measurement data
have to be evaluated and prepared carefully with the aim to generate suitable data for
traffic simulations. Simplemethods of the evaluationof localmeasurement data including
their problems are described below.

Trajectories of vehicles :Asingle lane of ahighwaywithmoving vehicles is considered.The
position of vehicle i at time t is denoted by xi (t) . The function xi (t) is called the trajectory
of vehicle i. The time derivative dxi∕dt is the velocity of vehicle i. The velocity is always
non negative so that a trajectory is amonotonously increasing function. Trajectories of dif-
ferent vehicles do not intersect each other. It is useful to visualize trajectories in a space-
time diagram.

Trajectories of vehicles on a single lane can be computed from aerial photographs. Figure
2.1 shows the trajectories of a moving traffic jam in a space-time diagram. The jam region
can be recognized by the region of trajectories which are nearly horizontal and close to-
gether. The vehicles in the jam region are moving very slowly with short distances to their
predecessors. The jam wave moves backward.

Figure 2.1 : Trajectories of vehicles from aerial photographs [1]
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Local traffic measurements : Local traffic measurements are usually carried out at fixed
intersections of a highway using installed detectors for each lane. A detector of lane j
counts the vehicles which pass the intersection position x within a prescribed time interval
from t to t+∆T. Additionally the velocities of the detected vehicles aremeasured and the
mean velocity is determined.

∆Nj (x, t)

vj (x, t)

number of vehicles on lane j during

mean velocity of vehicles on lane j during

∆T

∆T

The evaluation of local measurement data depends significantly on the time interval ∆T.
If ∆T is too small, random fluctuations are dominant. If ∆T is too large, stop and gowaves
are smoothed away. In the literature it is proposed that ∆T should be chosen in the range
from 0.5 to 10 minutes. ∆T = 1 min is a suitable choice for using local measurement data
in traffic simulations.

Traffic flow and density : The traffic flow and the traffic density on a single lane are com-
puted from the local measurement data. The traffic flow is defined as the number of ve-
hicles per time unit and is calculated as follows :

qj (x, t)=
∆Nj (x, t)
∆T

(2.1)

The mean traffic density is defined as the number of vehicles per length unit and can be
calculated approximately from the traffic flow and the mean velocity :

ρj (x, t) =
∆Nj (x, t)
∆xj

≈
∆Nj (x, t)

∆T ⋅ vj (x, t)
=
qj (x, t)

vj (x, t)
(2.2)

The approach ∆xj≈ ∆T ⋅ vj (x, t) is only valid, if all detected vehicles are moving with
approximately the same velocity during the time interval ∆T. This requirement is not sa-
tisfied for stop and go traffic. Hence, the mean densities calculated from local measure-
ment data are not realistic in this case.

Macroscopic traffic data : The macroscopic traffic data at each intersection of a highway
are computed from the corresponding traffic data of all lanes. The total traffic flow is the
sum of the traffic flows of all lanes :

q (x, t) =
j

qj (x, t) (2.3)

Two different methods can be used for the calculation of the total mean velocity. In the
firstmethod the total mean velocity is calculated as theweighted arithmetic average of the
mean velocities of all lanes. In the secondmethod the weighted harmonic average is used
instead of the weighted arithmetic average in the first method.

vI (x, t)=
j

vj (x, t)
qj (x, t)

q (x, t) (2.4)
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1
vII (x, t)

=
j

1
vj (x, t)

qj (x, t)

q (x, t) (2.5)

The total mean density is calculated from the total traffic flow and the total mean velocity
as follows :

ρI (x, t)=
q (x, t)
vI (x, t)

=
q2 (x, t)


j

vj (x, t) ⋅ qj (x, t)
(2.6)

ρII (x, t)=
q (x, t)
vII (x, t)

=
j

qj (x, t)

vj (x, t)
= 

j

ρj (x, t) (2.7)

If the mean velocities of all lanes are equal, both methods lead to the same results for the
total mean velocity and density. Otherwise the first method always leads to a larger total
mean velocity and to a lower total mean density than the second method.

vI (x, t)≥ vII (x, t)

ρI (x, t)≤ ρII (x, t) (2.8)

Bothmethods are widely used in traffic engineering. Their results may be significantly dif-
ferent. The calculation of the total mean velocity is consistent with the statistical rule of
computingmean values in the first method but not in the secondmethod. The calculation
of the total mean density is consistent with the definition of traffic densities in the second
method but not in the first method.

Problem : The computation of macroscopic traffic data from local measurement data
using the simple methods described above is problematic. The basic problems are :

--- The computed traffic densities are not realistic if the traffic flows and velocities are
low.

--- It is not ensured, that the computed macroscopic traffic data satisfy the condition of
mass conservation with a sufficient accuracy.

Figure 2.2 shows time dependent functions of typical macroscopic traffic data which are
computed from local measurements data at an intersection of a highway.
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Figure 2.2: Traffic density, velocity, flow computed from local measurement data
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3 MICROSCOPIC TRAFFIC MODELLING

In microscopic traffic modelling, the motion of each vehicle in a traffic stream is con-
sidered. The driving behaviour of a vehicle depends significantly on the motion of the pre-
ceding vehicle and can be specified by simplified rules or interaction relationships. Abasic
model of cellular automata and a basic dynamic model of congested traffic are described
below.

3.1 Cellular Automaton Model

The cellular automatonmodel formicrosimulations of traffic flowwasdevelopedbyNagel
and Schreckenberg [2]. The basic model is a single-lane model which is discrete in space
and time. The driving behaviour is specified by only a few simple rules without losing the
essential phenomena in traffic dynamics. This single-lane model can be extended tomore
complex models, for example to multi-lane models with on-and off-ramps and different
types of vehicles.

Traffic state :Asingle lane withmoving vehicles is considered. The lane is subdivided into
cells of constant length ∆x. At time t each cell is either empty or occupied by one vehicle.
Each vehicle moves with a certain velocity which is specified by an integer number υ in
the range from 0 to υmax . This integer velocity is defined as the number of cells which are
passed by the vehicle during a prescribed time interval ∆t . Each vehicle has a certain dis-
tance to the preceding vehicle which is specified by an integer number s≥ 1. This integer
distance is defined as the number of empty cells between the vehicles increased by 1. The
velocity υ of a vehicle at time t must always be less than the distance s to its predecessor,
so that safe driving is ensured.

distance s > 1

vehicle preceding vehicle

velocity υ ∈ [ 0, υmax ]

Figure 3.1 : Traffic state on a single lane

Rules of traffic dynamics : The traffic state at time t+ ∆t is computed from the traffic
state at time t using the following four rules consecutively :

(1) Acceleration : if (s> υ+ 1) then υ :=Min { υ+ 1, υmax }
If the distance s of a vehicle to its predecessor is larger than υ+ 1 and the velocity
υ is lower than υmax , then the velocity is increased by 1.

(2) Braking: if (s< υ+ 1) then υ := s− 1
If the distance s of a vehicle to its predecessor is shorter than υ+ 1 , then the velocity
υ is reduced to the safe distance s --- 1.

(3) Randomization: with probability p do υ :=Max { 0, υ− 1}
If the velocity υ of a vehicle is greater than 0, the velocity υ is decreased by 1 with
a prescribed probability p.
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(4) Motion: Each vehicle moves υ cells forward.

Space and time scaling : Traffic simulations require a suitable space and time scaling of
the cellular automaton model. The cell length ∆x should be equal to the average length
of a vehicle. The maximum velocity υmax should represent the average velocity vf in free
traffic. The time interval ∆t depends on ∆x, υmax and vf . Typical values for space and time
scaling are :

∆x= 7.5 m vf= 130 km∕h υmax= 5

∆t= ∆x υmax ∕ vf= 1.04 s

Initial and boundary conditions : Theoretical investigations of traffic models are often
carried out for closed lanes (circuit) without boundaries. In this case only an initial state
of the traffic simulations has to be specified. Practical computations, however, are per-
formed for open lanes with an upstream and downstream boundary. In addition to the in-
itial state, boundary conditions have to be specified. Boundary conditions can be formu-
lated and implemented for different traffic situations.

Deterministic model : The cellular automatonmodel without randomized velocity reduc-
tion (rule 3) is a deterministic model. Starting with an arbitrary initial state for a closed
lane the traffic simulation reaches a steady state after a finite number of time steps. Steady
states for free and congested traffic are quite different. In free traffic all vehicles aremov-
ingwithmaximumvelocity υmax . In congested traffic each vehicle is movingwith the safety
distance s --- 1 to its predecessor. In steady states the velocity is a function of the distance
which is shown in Figure 3.

s

υ= υmax

υ

s≥ υmax+ 1
Free traffic:

υ= s− 1 1≤ s≤ υmax
Congested traffic:

5
4
3
2
1

0 54321 9876
0

Figure 3.2 : Velocity-distance function of steady states

Stochastic model : The cellular automaton model with randomized velocity reduction
(rule 3) is a stochastic model. The essential parameter of this model is the probability p
in rule 3. In connection with rule 1 and 2 the randomization rule 3 reflects three different
pattern of driving behaviour: fluctuations atmaximum velocity in free traffic, retarded ac-
celerations in stop-and-go traffic and over-reactions at braking.

The velocity-distance relationship of the stochastic model can be described by a discrete
probability distributiondepending on the parameter p. Figure 3.3 shows themean velocity
for eachdiscrete distancewhich is computed froma traffic simulationona closed lanewith
100 cells, 16 vehicles, 5000 time steps and p = 50%.
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Figure 3.3 : Velocity-distance relationship of a stochastic traffic simulation
with p = 50%

3.2 Dynamic Model of Traffic Congestions

The kinematics of vehicles form the basis of microscopic traffic modelling. There are two
different approaches of vehicle motions in traffic streams on a single lane. The first ap-
proach is that each vehicle must maintain the safe distance to the preceding vehicle which
depends on the relative velocities of the successive vehicles. The models based on this ap-
proach are called follow-the-leader models. The second approach is that each vehicle has
a desired velocity which depends on the distance to the preceding vehicle. A simplemodel
based on this approach was developed by Bando et al. [3] and is described below.

Traffic state : A single lane with moving vehicles i = 1, ..., n is considered. The position
of a vehicle i at time t is denoted by xi and the velocity by vi≥ 0. The distance from a ve-
hicle i to the preceding vehicle i+1 is si= xi+1− xi .

vehicle i preceding vehicle i+1vi

si

x

Figure 3.4 : Traffic state on a single lane

Dynamic equations : It is assumed, that each vehicle has the same desired velocity V (s)
which depends on the distance s. The acceleration of vehicle i is controlled by the driver
in such a way, that the current velocity vi is adapted to the desired velocity V ( si ) within
a certain time τ . From these assumptions the followingdynamic equations for each vehicle
i are obtained :

d xi
d t
= vi vi≥ 0 i= 1, , n

d vi
d t
=
V ( si )− vi

τ
si= xi+1− xi i= 1, , n

(3.1)

(3.2)

The adaption time τ is usually chosen as a constant value in the range from 0.5 to 2.0 sec.
It seems to be more realistic to specify the adaption time τ in dependence of V ( si )− vi ,
so that adaptions to lower velocities by braking and adaptions to higher velocities by accel-
erating canbemodelleddifferently (see also rule 1and2of the cellular automatonmodel).
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Velocity-distance function : When the distance of a vehicle to its predecessor becomes
smaller the vehicle has to reduce its velocity by braking.When the distance becomes larger
the vehicle can accelerate without exceeding amaximum velocity Vmax . Hence, the veloc-
ity distance function V (s) is a monotonously increasing function with V (0) = 0 and
V(s)→ Vmax for s→∞ . In [3] the following velocity-distance function is proposed:

V(s)= Vmax
tanh (d− 2)+ tanh 2

1+ tanh 2

d = s / D normalized distance

(3.3)

Numerical simulations :The dynamic equations are solvednumerically.Using the explicit
Euler method, the traffic state a time t+ ∆t is computed from the traffic state at time t
with ∆t< τ as follows:

xi (t+ ∆t)= xi (t)+ ∆t ⋅ vi (t)

vi (t+ ∆t)= vi (t) ( 1−
∆t
τ )+

∆t
τ V (si (t)) (3.4)

Equilibrium state : A traffic state is called an equilibrium state, if all vehicles move with
the same distance s to their predecessors and the same velocity v = V (s). The dynamic
equations are satisfied for each equilibrium state. An equilibrium state is stable, if small
deviations from the equilibrium distances decrease with time evolution. Otherwise the
equilibrium state is unstable. The stability condition canbe determinedusing themethods
of linear stability theory. It depends on the derivative V′(s) of the velocity-distance func-
tion and the adaption time τ :

V′(s)< 1 ∕ 2 τstability: (3.5)

If the stability condition for an equilibrium state is not satisfied, small perturbations are
producing moving jams.
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4 MACROSCOPIC TRAFFIC MODELLING

Macroscopic traffic modelling is based on the assumption that a traffic stream on a single
lane can be considered as a continuum ofmoving particles. The macroscopic traffic states
are described by continuous functions of the traffic density and the traffic velocity in the
space-time domain. They can be transformed into equivalent microscopic traffic states so
that the results ofmacroscopic trafficmodels canbe evaluatedon amicroscopic level. The
governing equations of macroscopic traffic dynamics are the continuity equation for the
density and the equation of motion for the velocity. The main problem is the formulation
of realistic driving forces in the equation of motion. It is assumed in all various formula-
tions that the internal driving force describes the adaption of the current velocity to a pre-
scribed equilibrium velocity with a certain adaption time. This approach of the internal
driving force is equivalent to the approach inmicroscopicmodelling (see section 3.2). The
partial differential equations, the equilibrium state as well as the initial and boundary
conditions of macroscopic traffic dynamics are described in the following sections.

4.1 Macroscopic and Microscopic Traffic States

Macroscopic traffic state :Amacroscopic traffic state on a single lane at time t is specified
by the continuous density function ρ (x, t)≥ 0 and the continuous velocity function
v (x, t)≥ 0 . The density function ρ (x, t) has an upper limit ρmax which represents the
maximumnumber of vehicles per length unit. The number of vehiclesN (a, b, t) in the spa-
tial interval [a, b[ at time t and the corresponding average velocity v (a, b, t) of the vehicles
are calculated as follows:

N (a, b, t)= 
b

a

ρ (x, t) dx 0≤ ρ (x, t)≤ ρmax

v (a, b, t) = 
b

a

v (x, t) dx ∕ (b− a) v (x, t)≥ 0

(4.1)

(4.2)

Microscopic traffic state :Amacroscopic traffic state can be transformed into an equival-
ent microscopic traffic state using the following procedure (see Figure 4.1):

(1) Starting with a prescribed position x1 , a sequence of positions xi with i = 1, 2, ... is
computed under the condition N (xi, xi+1, t)= 1 .

(2) The spatial interval [xi, xi+1[ contains the vehicle i which is placed at position xi and
has the distance si= xi+1− xi to its preceding vehicle i + 1.

(3) The average velocity v= (xi, xi+1, t) represents the velocity vi of vehicle i.

Using this transformation procedure, macroscopic traffic states can be evaluated on a
microscopic level.
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Figure 4.1: Macroscopic and microscopic traffic state

4.2 Dynamic Equations

Macroscopic traffic dynamics of single lane models are very similar to one-dimensional
fluid dynamics. The governing equations are partial differential equations for the density
ρ (x, t) and the mean velocity v (x, t) which are called continuity equation and equation
of motion.

Continuity equation : The law of the conservation of the number of vehicles leads to the
continuity equation for the density ρ (x, t) :

∂ρ
∂t +

∂
∂x (ρ v)= 0 (4.3)

Equation of motion : In contrast to fluid dynamics, the law of conservation of momentum
is not valid in traffic dynamics. That is why the equationofmotion is formulateddifferently
in the various existing macroscopic traffic models. Typical formulations of the equation of
motion for the mean velocity v (x, t) are:

∂v
∂t+ v

∂v
∂x=

V− v
τ

∂v
∂t+ v

∂v
∂x=

V− v
τ − 1ρ

∂p
∂x

∂v
∂t+ v

∂v
∂x=

V− v
τ − c

2
ρ
∂ρ
∂x+

m
ρ
∂2v
∂x2

(4.4)

(4.5)

(4.6)

V equilibrium velocity
p traffic pressure
c, m, τ parameters
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The left side of the equation of motion represents the total acceleration of the traffic
stream which consists of the local acceleration ∂v∕∂t and the convective acceleration
v ∂v∕∂x . The right side of the equationofmotion represents the driving forces of the traffic
stream. The meaning of the different terms for the driving forces are explained below.

Adaption : The term (V− v) ∕ τ is called the adaption term or relaxation term. It is as-
sumed that the current velocity v (x, t) is adapted to a prescribed equilibrium velocity V
within a certain time τ . The equilibrium velocity V, which depends at least on the density,
and the adaption time are the most important parameters of all macroscopic traffic mo-
dels. The equationofmotion(4.4) is equivalent to the dynamicequation (3.2)of themicro-
scopic traffic model.

Pressure : The term (1∕ρ) ∂p∕∂x is called pressure term or anticipation term. Different
approaches are used for the pressure. A ’hydrodynamic’ approach assumes that the pres-
sure is proportional to the density.

p= c2 ρ

c propagation velocity

(4.7)

A ’gasdynamic’ approach [4] assumes that the pressure is proportional to the density and
to the square of the velocity.

p= A (ρ) ρ v2

density dependent proportionality factorA (ρ)
(4.8)

The pressure term reflects the traffic behaviour that the velocity increases with locally de-
creasingpressure and vice versa. The equationofmotion (4.5) is similar to the Euler equa-
tion in fluid dynamics.

Viscosity : The term (m∕ρ) ∂2 v∕∂x2 with the viscosity parameter m is called viscosity term
which reflects some observations of viscous traffic flow in reality. The equation of motion
(4.6) is similar to the Navier-Stokes equation in fluid dynamics.

Conservative form :The above dynamic equations canbe reformulated in the conservative
formwith the density ρ (x, t) and the flow q (x, t) as primary variables.Using the flow rela-
tionships

q= ρ v Q= ρ V (4.9)

the corresponding conservative forms of the continuity equation (4.3) and the equation of
motion (4.5) are:

∂ρ
∂t +

∂q
∂x = 0

∂q
∂t +

∂
∂x q2ρ + p = Q− qτ

(4.10)

(4.11)
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The conservative formof thedynamic equationshas advantageousproperties innumerical
analysis.

4.3 Equilibrium State

Equilibrium state : The density ρ= const and the mean velocity v = V are solutions of
the dynamic equations and represent an equilibrium state. All vehicles are moving with
the same velocity V and the same distance s= 1∕ρ to their predecessors. In microscopic
modelling, the velocity-distance relationship is specified by a function V (s).

x

ρ

ρ = const

1

s= 1∕ρ

x

v

v = V

Figure 4.2: Equilibrium state

Equilibrium velocity and flow :Themean velocity of an equilibrium state is called equilib-
rium velocity and is specified by a function V(ρ) which decreases monotonously from
V(0)= V0 to V(ρmax)= 0.

V= V (ρ) 0≤ V≤ V0
d V
d ρ
≤ 0 (4.12)

The mean flow of an equilibrium state is called an equilibrium flow and is defined as a
function Q= ρV which has one maximum value Qmax .

Q= ρV 0≤ Q≤ Qmax (4.13)

Unfortunately, the equilibrium velocity or the equilibrium flow can not be determined
frommeasurement data because equilibrium states do not occur in real traffic. That is why
in the literature differentapproaches for the equilibriumvelocity areproposed. Some typi-
cal approaches are shown in Figure 4.3.

Stability : An equilibrium state is stable, if small deviations from the equilibrium density
or the equilibriumvelocity decreasewith time evolution. The stability condition can be de-
terminedusing themethods of linear stability theory. For the continuity equation (4.4) and
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the Navier-Stokes-like equation of motion (4.6), the stability depends on the derivative
V′(ρ) of the equilibrium velocity and the propagation velocity c:

|V′(ρ)|< c∕ρstability (4.14)

If the stability condition for an equilibrium state is not satisfied, small perturbations are
producing moving jams.

V (ρ) := Vmax 1− ρρmaxm
n

V (ρ) := Vmax  1
1+ e(ρ∕ρmax−a)∕b



Power approach:

V

Vmax

Exponential approach:

Approach of Helbing [4]

V

ρ
ρ max

Vmax

V

Vmax

ρ Qmax

Q

Q max

Q

Q max

Q

Q max

ρ max

ρ max ρ max

ρ max ρ max

ρ Qmax
ρ

ρ

ρ

ρ ρ
ρ Qmax

Figure 4.3 Equilibrium velocity and fundamental diagram
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4.4 Initial and Boundary Conditions

Initial conditions : The space dependent initial conditions describe the traffic state on a
single lane at the time t = 0.

ρ (x, 0)= ρ (x) v (x, 0)= v (x) (4.15)

If a closed lane without boundaries is considered, the results of traffic simulations depend
significantly on the specified initial conditions. For an open single lane however, the initial
conditions influence the results of traffic simulations only for a short time period.

Boundary conditions :The time dependent boundary conditions describe the traffic states
at the upstream boundary x = 0 and the downstream boundary x = L of an open single
lane of length L. There are different options for the specification of boundary conditions.
Usually Dirichlet and von Neumann boundary conditions are used:

(1) The Dirichlet boundary conditions assume that the traffic states at the boundaries
are given.

ρ (0, t)= ρ0 (t) v (0, t)= v0 (t)

ρ (L, t)= ρL (t) v (L, t)= vL (t) (4.16)

(2) The homogeneous vonNeumann boundary conditions assume that the traffic states
at the boundaries remain unchanged.

∂ρ
∂x (0, t)= 0

∂ρ
∂x (L, t)= 0

∂v
∂x (0, t)= 0

∂v
∂x (L, t)= 0 (4.17)

Dirichlet boundary conditions are suitable for the simulation of real traffic withmeasured
traffic data at both boundaries. Homogeneous vonNeumann boundary conditions can be
used if the traffic states outside the lane are not of interest. The boundary conditionsmust
be consistent with the solutions of the governing equations. Inconsistent boundary condi-
tions lead to numerical instabilities.



Bild 5.

Bild 6.

16

5 NUMERICAL SIMULATION METHODS

The numerical solution of the dynamic equations of macroscopic traffic models is a par-
ticular difficult task because the formationof traffic jams is associatedwith steep gradients
of the density and velocity distributions. Numericalmethods require a discretization of the
space-time domain and a suitable approximation of the density and velocity distribution.
The development of numerical simulation models is based on the methods of finite vol-
umes, finite differences or finite elements in connection with explicit or implicit time in-
tegrationmethods. Three numerical simulationmodels, which are selected from the vari-
ous existing models, are described briefly in the following sections.

5.1 Finite Volume Method

The method of finite volumes allows the formulation of the governing equations in a dis-
crete form using conservation principles. Hilliges [5] developed a simple but efficient dis-
crete model on this basis.

Discrete model : The lane is subdivided into finite volume cells of length ∆x. For each cell
i, the density ρ (i, t) and the velocity v (i, t) are introduced as primary variables.

cell i---1 cell i cell i+1

v (i, t)

x

ρ (i, t)

∆x ∆x ∆x

Figure 5.1 : Finite volume cells

The continuity equation and the equation ofmotion are specified in a discrete form as fol-
lows:

∂ρ (i, t)
∂t =

ρ (i−1, t) v (i, t)− ρ (i, t) v (i+1, t)
∆x

∂v (i, t)
∂t = v (i, t)

v (i− 1, t)− v (i+ 1, t)
2 ∆x +

V (ρ (i, t))− v (i, t)
τ

(5.1)

(5.2)

It is assumed in the continuity equation (5.1) that the vehicles of cell i---1 enter the cell i
with the velocity v (i, t) and the vehicles of cell i leave cell i with the velocity v (i+1, t). This
assumption reflects the anticipating behaviour of the drivers. The equations in a discrete
form satisfy the condition that the density and the velocity of each cell is always positive
or zero.

Continuous approximation : The equations of the discrete model are transformed into
partial differential equations by Taylor approximations. Let x be the coordinate of the
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centre of cell i. Then the Taylor approximations for the density and the velocity lead to the
following partial differential equations :

∂ρ
∂t +

∂
∂x (ρv)=

∆x
2
v ∂2ρ
∂x2
− ρ ∂

2 v
∂x2
+O (∆x2 )

∂v
∂t+ v

∂v
∂x=

V (ρ)− v
τ +O ( ∆x2 )

(5.3)

(5.4)

Neglecting terms ofquadratic orhigher order in ∆x, equation (5.3) represents the continu-
ity equation (4.3) extended by an additional diffusion term which is proportional to ∆x.
Equation (5.4) is equivalent to the equation of motion (4.4).

Numerical simulation : The equations of the discrete model are solved numerically using
an explicit Euler method for the time integration.

ρ (i, t+ ∆t)= ρ (i, t)+ ∆t
∂ρ (i, t)
∂t

v (i, t+ ∆t)= v (i, t)+ ∆t
∂v (i, t)
∂t (5.5)

The stability of the numerical simulation depends on the parameter ∆x,∆t and τ . The cell
length ∆x should not be less than 100 m, because otherwise the implicit diffusion term is
too low and the model becomes unstable. The time step ∆t must be chosen in such a way
that the Courant condition v≤ ∆x∕∆t for the explicit time integration is satisfied. Typical
values for the adaption time τ are chosen in the range from 3.0 to 7.5 sec.

5.2 Finite Difference Method

The methods of finite differences approximate the derivatives of differential equations by
differences. TheKeller-box scheme is a finite differencemethod of high accuracy for non-
linear partial differential equations of first order. Kerner and Kohnhäuser [6] developed
a numerical method for the solution of the continuity equation and theNavier-Stokes-like
equation on the basis of the Keller-box scheme.

Dynamic equations : The dynamic equations are the continuity equation (4.3) and the
Navier-Stokes-like equationofmotion (4.6).Anadditional equation for the spatial deriva-
tive ∂v∕∂x is introduced so that the governing partial differential equations are of first
order.

f1 :=
∂ρ
∂t + v

∂ρ
∂x+ ρ

∂v
∂x= 0

f2 :=
∂v
∂t+ v

∂v
∂x−

c2
ρ
∂ρ
∂x+

m
ρ
∂w
∂x −

V− v
τ = 0

f3 :=
∂v
∂x− w= 0 (5.6)



18

Finite difference approximation :The continuous functions ρ (x, t), v (x, t) andw ( x, t) are
computed at discrete grid points (xi, tj) in the space-time domain and denoted by ρi, j , vi, j
and wi, j . Usually a regular grid with a spatial increment ∆x and a time step ∆t is chosen.

xi= i ⋅ ∆x

tj= j ⋅ ∆t

i= 0, 1, , n

j= 0, 1, 

Figure 5.2 shows a grid box with xi−1≤ x≤ xi and tj−1≤ t≤ tj . The value and the
partial derivatives of a function u ∈ ρ, v, w at the midpoint m of the box are calculated
approximately from the function values at the box vertices by the following formulas:

um′ := ∂u∂xm u⋅m := ∂u∂tm
um = (ui, j+ ui−1, j+ ui, j−1+ ui−1, j−1 ) ∕ 4

um′ = (ui, j− ui−1, j+ ui, j−1− ui−1, j−1 ) ∕ (2 ⋅ ∆x)

u⋅m = (ui, j+ ui−1, j− ui, j−1− ui−1, j−1 ) ∕ (2 ⋅ ∆t) (5.7)

The substitutions of the above approximations into the partial differential equations lead
to finite difference equations for the midpoint of the box:

f1, m := ρ⋅m+ vm ρm′ + ρm vm′ = 0
f2, m := v⋅m+ vm vm′ − c2 ρm′ ∕ ρm+ m wm′ ∕ ρm− (V (ρm)− vm) ∕ τ= 0
f3, m := vm′ − wm= 0 (5.8)

tj

t

tj−1

∆t

∆x

ui, j

ui, j−1ui−1, j−1

ui−1, j

xi−1 xi

m

x

Figure 5.2 : Box scheme for finite difference approximations

The three necessary boundary conditions for ρ, v, w at time tj and the finite difference
equations for the midpoints of all boxes with tj−1≤ t≤ tj form a system of nonlinear
equations. If the variables ρi, j−1, vi, j−1, wi, j−1 for i = 0, 1, ..., n at time tj−1 are
known, the variables ρi, j , vi, j , wi, j for i= 0, 1, ..., n at time tj are computedby solving
the nonlinear equations. It is useful to arrange the nonlinear equations for the unknown
variables in the following block by block form:
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f (u)= 0

u0

u1

un

⋅⋅⋅
u=

f0
f1

fn

⋅⋅⋅
f=

boundary conditions

finite difference
equations

(5.9)

ρi, j

ui=

f1, m

fm=vi, j

wi, j

f2, m

f3, m

Nonlinear equation system :The nonlinear equations are linearized and solved iteratively
using the Newton procedure.

J (uk ) ⋅ ∆ u k+1=− f (u k ) with J (u)= ∂f ∕∂u

u k+1= u k+ ∆ u k+1 (5.10)

A linear equation systemwith the Jacobianmatrix J has to be solved in each iteration step
k. The Jacobianmatrix contains the partial derivatives of the nonlinear equations with re-
spect to the unknown variables and has the following block structure:

J =

The special structure of the matrix J allows the implementation of efficient algorithms for
the solution of the linear equation system (5.10). However, the matrix J is not diagonal
dominant. Hence, algorithms based on Gauss elimination without rearrangements of the
structure are not suitable. Algorithms based on orthogonal transformations (Givens,
Householder) are numerically very stable and can be used effectively for the solution of
the linear equation system.

Numerical simulation : The finite difference approximation for the solution of the dy-
namic equations has a consistency order O ( ∆x2,∆t2 ) and is numerically stable. The spa-
tial increment ∆x and the time step ∆t should be chosen depending on the application.
However, the numerical simulation requires a considerable computational effort because
a nonlinear equation system has to be solved in each time step.
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5.3 Finite Element Method

Finite element methods are widely used for numerical computations in fluid dynamics.
Rose and Milbradt [7] developed a finite element method for traffic dynamics based on
the continuity equation and the Navier-Stokes-like equation of motion.

Dynamic equations : The continuity equation (4.3) and the Navier-Stokes-like equation
of motion (4.6) are formulated in vector notation as follows:

I ∂u∂t + A
∂u
∂x− B

∂2 u
∂x2
= f

ρ

v
u=

ρ
I=

1 0

0 1
A=

ρ

c2∕ρ

v

v
B=

m∕ρ

0

0

0ρρ
f =

0

(V−v)∕τ

(5.11)

Finite element approximation : The lane is subdivided into finite elements. At each node
i with the coordinate xi the time dependent nodal vector ui (t) is introduced as a primary
variable which contains the density ρi (t) and the velocity vi (t). The solution vector u (x,
t) is approximatedby a function u f (x, t) which is a linear combinationof the nodal vectors
ui (t) and the normalized triangular shape function Φi (x) .

u f (x, t)=
n

i=1
Φi (x) u i (t)

ui (t)
u

∆x ∆x

Φi

xi

1

d Φi
dx

1∕∆x

---1∕∆x

x

x

x

Figure 5.3 : Finite element approximation

The approximation u f (x, t) is substituted into the partial differential equation system
(5.11). The result of this substitution is the residual vector r (x, t).
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r (x, t)=n
i=1
I Φi du idt + A dΦidx u i− B d2Φidx2

ui− f (5.12)

The nodal vectors u i (t) are determined on the basis of weighted residuals using a Petrov-
Galerkin method with an upwind parameter α .


L

0

I Φi+ α A dΦidx  r (x, t) dx= 0 i = 1, ..., n (5.13)

The Standard-Galerkin method (α= 0) tends to unrealistic oscillations and even insta-
bilities, if the convective term A is dominant compared to the diffusion term B in the dy-
namic equations. The upwind term with α> 0 of the Petrov-Galerkin method should
compensate the oscillations and ensure the stability of the finite element approximation.

Upwind parameter : The upwind parameter α is known and theoretically proved for the
one-dimensional convection-diffusion equation with a scalar function u (x, t), a constant
convection coefficient a and a constant diffusion coefficient b.

α= ∆x
|a|
(coth Pe− 1∕Pe) Pe=

|a|
|b|

∆x

Pe = Peclet number

(5.14)

This result can be overtaken to the dynamic equations (5.11) if representative values a and
b can be determined for the convection matrix A and the diffusion matrix B. It seems to
be a suitable approach to use the largest eigenvalues of A and B.

|a|= v+ c |b|= m∕ρ (5.15)

This approach for the upwind parameter leads to good numerical results, but has to be
proved theoretically.

Numerical simulation : The governing equations for the nodal vectors ui (t) determined
by the Petrov-Galerkin method form a system of ordinary differential equations.

M d u
d t
= C u+ f uT= u1  un (5.16)

These equations are solved numerically using an explicit method for the time integration.
Efficient algorithms for the numerical solution can be implemented which reduce thema-
trix M to a diagonal matrix and control the time step automatically using an empirical
condition |a|≤ ∆x∕∆t.
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5.4 Numerical Perturbation Analysis

Numerical traffic simulations are investigated on the basis of a numerical perturbation
analysis with respect to the formation of traffic jams. For this purpose, a closed single lane
is considered. It is assumed that the initial traffic state is an equilibrium state with a pre-
scribed density ρe and a small local perturbation of the uniform density distribution. The
properties of the jam formations are studied in detail depending on the density ρe .

Figure 5.4 shows some typical results of a numerical perturbation analysis formacroscopic
traffic models based on the continuity equation and the Navier-Stokes-like equations
using the finite element method [7]. The equilibrium is stable for free traffic with
ρe< 15 veh.∕km and for dense traffic with ρe> 60 veh.∕km. In the stable case the per-
turbations of the equilibrium state decreases with increasing time. The equilibrium is un-
stable for congested traffic. There are three different phenomena of congested traffic with
respect to jam formations: simple jam, stop and go traffic and wide jam. The jams move
backward with a velocity of about ---15 5 km∕h . The different phenomena of jam
formations can also be observed in real traffic on highways.
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Figure 5.4 : Density evolutions in the space-time diagram
and spatial density distributions at time t = 3, 11, 30 min
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6 TRAFFIC MEASUREMENTS AND SIMULATIONS

Traffic scenario :Figure 6.1 shows a schematic diagramof a 9 kmsectionof theA5highway
in Germany with three lanes, one off ramp, one on ramp and ten intersections Q79---Q89
with installed detector equipments. Measurement data have been made available by the
Board of Road and Transportation in the state Hessen. A locally fixed jam was observed
onTuesday 27 January 2001 whichwas caused by an accident behind the intersectionQ89.
This traffic scenario is chosen for a comparison of measurements and simulations.

0 1 2 3 4 5 6 7 8 9km

upstream boundary traffic flow downstream boundary

Q79 Q80 Q81 Q82 Q83 Q85 Q86 Q87 Q89Q88

Figure 6.1: Section of the A5 highway

Macroscopic single-lane model : The traffic scenario is simulated using a single-lane
model. The initial conditions, the boundary conditions and the ramp flows are calculated
from the measurement data. The begin of the simulation is chosen in such a way that the
initial state is a state of free traffic. The time dependent density and velocity at the up-
stream boundary and the time dependent velocity at the downstream boundary are speci-
fied on the basis of the detector data at the intersections Q79 and Q89. The boundary
conditions are shown in figure 6.2. The low densities and the high velocities at the up-
stream boundary represent free traffic. The low velocities at the downstream boundary
indicate a traffic jam.

Model parameter : The method of Hilliges (see section 5.2) is used for the solution of the
dynamic equations of the single-lane model. The discretization parameters of the space-
time domain depend on the accuracy and the stability of themethod and are chosen as fol-
lows:

∆x= 100 m (6.1)∆t= 1 sec

The equilibrium velocity-density function and the adaption time τ are the most important
parameters of single-lane models and depend significantly on the traffic scenario. For this
scenario, the equilibrium velocity-density function of Helbing is used which is described
by a set of eight parameters. The essential parameters are the maximum velocity and the
maximum density which are chosen as follows:

Vmax= 125 km∕h (6.2)ρmax= 135 veh.∕km
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Figure 6.2: Upstream and downstream boundary conditions

The other parameters are taken from the literature [4]. The adaption time τ is determined
by variation. Good simulation results are obtained for τ = 2 sec.

Comparison : Figure 6.3 shows the simulated andmeasured velocities at the intersections
Q89---Q86 depending on the time. A good agreement between the simulated and
measured velocity profiles could be achieved with respect to the upstream and down-
stream front of the jam. The upstream frontmoves backwardwith a velocity of about ---4,5
km/h which depends on the inflow into the jam. The downstream frontmoves faster back-
ward than the upstream front with a velocity of about ---12 km/h and an outflow from the
jam which is approximately constant.

Figure 6.3 shows the corresponding density profiles at the intersections Q89---Q86. The
simulated density profiles and the density profiles calculated from local measurements
differ significantly in the jam region. As mentioned in section 2, the densities calculated
from localmeasurements are not reliable if the corresponding velocities and flows are low.
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