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The modeling of traffic flow is a key tool to simulate and predict the behavior of traffic systems.
Macroscopic traffic simulation models are based on advection dominated coupled non-linear partial
differential equations. The solution of such advection dominated equations with the method of finite
elements is leading to the development of stabilization techniques. The choice of suitable stabilization
parameters is often application-dependent. A stabilized finite element procedure on the basis of a
Galerkin/least-square approximation is presented for systems of transient advection-dominated
equations. A general rule for computing suitable element stabilization parameters is outlined which
uses the spectral radius of the differential operators and the specific element expansion. The application
of this approximation to a macroscopic traffic model shows the applicability of this approach.
Simulation results of typical phenomena of jam formation in freeway traffic are presented.
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1. Introduction

In the recent years, detector equipments and variable

message sign systems have been installed to control and

influence traffic flows on freeways. Traffic control systems

are based on the idea to avoid traffic instabilities and to

homogenize the traffic flow in such a way that the risk of

accidents is minimized and the mean velocity or the traffic

flow is maximized. The traffic control systems need the

evaluation of the measured traffic data, a short time

prediction of the traffic situation and traffic simulations for

possible control measures without significant time delay.

Macroscopic traffic simulation models based on of

Navier–Stokes-like equations (Lighthill and Whitham

1955). The numerical approximation of such advection

dominated problems with the method of finite differences,

finite volumes or the method of finite elements frequently

leads to instabilities or to reduced accuracy of the

approximated solution.

The stabilized finite element method adds mesh

dependent terms to the usual Galerkin method to overcome

most of the limitations in the Galerkin method by solving

transport dominant problems. Since Brook and Hughes

(1982) suggested stabilization with the SUPG method,

different stabilizing procedures were developed for the

scalar transport equation and extended to multi-scale

problems. Stabilized finite element methods have grown

popular over the last years, especially in application to fluid

dynamics. In the work presented here, the approximation

is based on stabilization with a combination of the Galerkin

and least-squares approach (Christie et al. 1976). The

choice of suitable stabilization parameters is difficult and

often application-dependent (Hughes et al. 1989).

2. Statement of the problem

The following general transient problem shall be viewed.

Let V represent the open bounded domain in Rn and G its

boundary. Find a vector valued function U : V! Rm such

that
›U

›t
þ LU þ S ¼ 0 ð1Þ

is valid, where L is a quasi-linear differential operator and

S are source and sink terms. We assume that all necessary
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boundary and initial conditions which guarantee the

existence of the solution are available.

Now we assume that the quasi-linear differential

operator L can be understood as sum of an advection

operator Ladv and a diffusion operator Ldiff

L ¼ Ladv þ Ldiff ð2Þ

with the following concrete form:

L ¼ Ai

›

›xi

2
›

›xi

Kij

›

›xj

� �
ð3Þ

here Ai is the i th Euler Jacobian matrix and Kij is the

diffusivity matrix. Each operator can be divided again into

its local components. As this can be shown for the

transport operator:

Ladv ¼
X

Ladv;i ¼
X

Ai

›

›xi

ð4Þ

3. Semi-discrete stabilized finite element

approximation

In order to approximate the equation (1) with the finite

element method the domain V is discretized into nel finite

elements Ve. Let H 1(V) the usual Sobolev space of

functions with square-integrable values and derivatives

on V.

The derivation of the semi-discrete stabilized finite

element approximation is carried out via the combination

of a standard Galerkin approximation and the least squares

approximation. This can be described roughly, for the

differential equation (1) as follows:

ð
V

ðUt þ LU þ SÞ · w dVþ
Xnel

e¼1

te

ð
Ve

ðL · wÞðUt þ LU þ SÞdVe ¼ 0
ð5Þ

The first integral contains the Galerkin approximation

(interior and boundary) and the second term contains the

least-squares stabilization which is composed of the sum

of integrals over the element interiors. This approximation

is called semi-discrete Galerkin/least-squares method. We

use the following modified semi-discrete streamline

upwind Petrov–Galerkin method which is a predecessor

to the Galerkin/least-squares method:

ð
V

ðU;t þ LU þ SÞ · w dVþ
Xnel

e¼1

te

ð
Ve

ðLadv · wÞðUG
;t þ LU þ SÞdVe ¼ 0

ð6Þ

where UG
;t is determined by the standard Galerkin-method.

The difference to the Galerkin/least-squares is that rather

than having L operating on the weighting space, only its

advective part, Ladv, acts there. The element stabilization

parameter te weighted the portion of the least-square part

to the Galerkin part of the method.

4. Stabilization parameter

The element stabilization parameter te plays an important

role for the stability and consistency as well as for the

accuracy of the approximation. The derivation of the

stabilization parameter is reasonably clear in the case of a

steady-state one-dimensional scalar valued problem. For

following advection diffusion equation in (0,1)

v · cx 2 1 · cxx ¼ 1 with cð0Þ ¼ cð1Þ ¼ 0 ð7Þ

the element parameter te is chosen on the basis of finite

difference considerations (Christie et al. 1976) and has the

form:

te :¼ aopt

1

2

Dx

jvj
ð8Þ

where Dx is the length of the domain discretization, jvj the

absolute value of the transport velocity. The optimality

parameter aopt is computed by:

aopt :¼ coth ðPeÞ2
1

Pe
ð9Þ

based on the Peclet number

Pe :¼
jvj ·Dx

j1j
: ð10Þ

The transfer to the scalar valued multidimensional case

takes place in analogy via the consideration along the

characteristics, using the Euclidean norm k~vk of the

velocity vector and a characteristic element expansion he

associated with this vector (see figure 1).

te :¼ aopt

1

2

he

k~vk
ð11Þ

The computation of the element expansion he

presuppose that in a particular element the velocity

components vx and vy are substantially constant.

Figure 1. Computation of the element size.
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4.1 Multi-dimensional vector valued problem

Consequently for multidimensional vector valued trans-

port problems a norm k�k of the transport operator and a

related characteristic element expansion he are used:

te :¼ aopt

1

2

he

kLadvk
ð12Þ

The optimality parameter aopt is computed in the same

way as in equation (9)

aopt :¼ coth ðPeÞ2
1

Pe

but now the element Peclet number depends on the

operator norms of the advection and diffusion differential

operator

Pe :¼
kLadvkhe

kLdiffk
: ð13Þ

The choice of a suitable operator norm has a large

influence on the quality of the solution. On the basis of the

general definition (Kolmogorov and Fomin 1975) of the

norm of continuity operators in (Euclidean) normed

spaces we define the following operator norm. The

differential operator has the form presented in equation (4)

Ladv ¼
X

Ladv;i ¼
X

Ai

›

›xi

:

This leads to the operator norm

kLadvk :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
rðAiÞ

2
q

ð14Þ

where rðAiÞ is the spectral radius of the operator

component

rðAiÞ :¼ maxjljðAiÞj: ð15Þ

Here lmaxðAiÞ is the absolutely largest eigen value of the

Matrix Ai. This definition is consistent in all dimensions,

starting by the one-dimensional scalar valued advective

diffusive problem up to more dimensional and vector

valued problems.

This approach for the stabilization parameter leads to

very good numerical results for a large number of

simulation models for hydro- and morphodynamic

processes (Milbradt 2002) as well as macroscopic freeway

traffic flows as presented in the following.

5. Macroscopic traffic flow modeling

Traffic flow models are essential tools to assess and

control traffic flows on main freeways. The idea to model

the traffic flow in a macroscopic way based on Lighthill

and Whitham (1955). In this case the traffic flow is a

continuous flow where individual vehicles can be

identified. The continuous traffic flow can be described

by the mean velocity V and the traffic density r. The

equations of the traffic flow model by Kühne et al. (1996)

are very similar to the Navier–Stokes equations.

›r
›t
¼ 2V ›r

›x
2 r ›V

›x

›V
›t
¼ 2V ›V

›x
2

c2
0

r
›r
›x
þ m

r
›2V
›x 2 þ

1
t
ðVe 2 VÞ ð16Þ

In contrast to fluid dynamics, in traffic dynamics the law

of conservation of momentum is not valid. The term ðVe 2

VÞ=t is called the adaptation term or relaxation term. It is

assumed that the current velocity V(x, t) is adapted to a

prescribed equilibrium velocity Ve within a certain time t.

The equilibrium velocity Ve, depending at least on the

density and the adaptation time are the most important

parameters of all macroscopic traffic models. The model is

characterized by a density dependent pressure parameter-

isation with constant velocity of propagation c0
2 and due

to an additional diffusion term, with constant viscosity m

reflecting some observations of viscous traffic flow in

reality.

The above one-dimensional vector valued advection

diffusion problem (16) can be expressed as

›U

›t
þ A

›U

›x
2 B

›2U

›x2
2 S ¼ 0 ð17Þ

with

U ¼
r

V

h i
; A ¼

V r

c2
0

r
V

2
64

3
75; B ¼

0 0

0 m

r

2
4

3
5 and

S ¼

0

Ve2V
t

2
4

3
5:

Now we have the following operator-norms

���A
›

›x

��� ¼ jVj þ jc0j and
���B

›2

›x2

��� ¼
m

r

as well as the element stabilization parameter

te :¼ aopt

1

2

Dx

jVj þ jc0j
: ð18Þ

Here is aopt :¼ cothðPeÞ2 1=Pe, and the element

Peclet number can be determined by

Pe :¼

�
jVj þ jc0j

�
D · x

m=r
: ð19Þ

The complexity of the arising phenomena is demon-

strated in an academic case example. A closed single lane

is considered. It is assumed that the initial traffic state is in

equilibrium state with a prescribed density re and a small

local perturbation of the uniform density distribution.

The properties of the jam formations are studied in detail

depending on the density re.
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Figure 2 shows some typical results of a numerical

perturbation analysis for macroscopic traffic flow models.

The equilibrium is stable for free traffic flow with re , 15

veh/km and for dense traffic flow with re . 60 veh/km. In

the stable case the perturbations of the equilibrium state

decrease with increasing time. The equilibrium is unstable

for congested traffic flow. There are three different

phenomena of congested traffic flow with respect to jam

formations: moving jams, stop and go waves and wide

jams. The jams move backward with a velocity of about

215 ^ 5 km/h. The different phenomena of jam formation

can also be observed in real traffic on highways.

The numerical realization of the Navier–Stokes-like

equations with the stabilized finite element method leads

to the same results as a nearly exact implicit finite

difference method used by Kerner et al. (1996).

Practical applications include data evaluation and data

editing of data obtained from local traffic measurements

on the german freeway A5 near Frankfurt and traffic flow

simulation for three selected traffic scenarios are

implemented. It can be shown that the traffic flow model

is able to reflect these typical traffic scenarios like a fixed

traffic jam or a moving traffic jam (Rose 2004).
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Figure 2. Density evolutions with re ¼ 25 veh/km: (a), re ¼ 50 veh/km; (b) re ¼ 56.25 veh/km; and (c) in space-time diagram and spatial density
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