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ABSTRACT 

A procedure based on the Galerkin/least-squares FEM for advective-diffusive equations is 
generalized to cover the FVM and FDM. The numerical realization is performed as a local error 
correction in three steps. In the first step a global approximation is calculated. In the second step 
the local residua are determined and then used in combination with the stabilization parameter 
to correct the global approximation. Two numerical test cases of a transport problem and dam-
break  induced  flow  were  carried  out.  These  tests  show  the  efficient  applicability  of  the 
presented generalized stabilization techniques.
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1. INTRODUCTION

Many of  the  physical,  technical  and  natural  phenomenons can  be  modelled  by  the 
Advection-Diffusion  Equation.  Examples  are  the  transport  of  a  solute,  shallow  water, 
morphodynamics as well  as traffic flow etc.  The transient Advection-Diffusion Equation is 
given, according to the approximating numerical method, in the direction independent form in 
Eq. 1, the direction dependent form in Eq. 2, and the operator form in Eq. 3 and Eq 4.
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In the previous equations U  is the unknown variable of the problem, u  is the velocity 
vector with the x- and y- components u  and v ,    is the diffusion coefficient and S  is the 
source and sink. In Eq. 3 and 4  L  is the differential operator,  Ai  is the  ith  Euler Jacobian 
matrix and K ij  is the diffusivity matrix.

The  most  commonly  used  numerical  methods  to  approximate  the  solution  of  the 
transient Advection-Diffusion Equation are the Finite Difference Method (FDM), the Finite 



Volume Method (FVM)  and the  Finite  Element  Method  (FEM).  The  essential  differences 
between these methods can be illustrated as in Figure 1.

Using the FDM the differential equation will be approximated by a difference equation. 
This  is  a  very  easy  method  with  an  equidistant  structured  calculating  mesh.  The  FEM 
approximates the solving space of the PDE; and the unknown function is interpolated by a set of 
basis functions, that will be helpful in calculating the derivatives. It is apparently more complex 
and has more flexibility decomposing the solution domain. The FVM starts with the integration 
of the PDE over  a control  volume.  By using the divergence theorem the integral  over  the 
volume will be substituted against an integral over the control volume's boundary. It is simpler 
than the FEM at the first sight and still has the flexibility of arbitrarily decomposing the solution 
domain but with special volume decomposition requirements.

Figure 1: The most commonly used numerical methods and their essential differences

The mere standardized application of these numerical methods in solving the Advection-
Diffusion Equation results in a nonphysical oscillated approximation of the advection dominant 
PDE and an instable numerical method.

Stabilising  these  methods  is  an  important  issue  to  grantee  the  applicability  of  a 
numerical method to real  world problems. The Galerkin/least-squares finite element method 
overcomes the instability resulting from only applying the Galerkin method by introducing a 
mesh dependent least square term see Hughes (1989). This approach was adapted by Milbradt 
(2002) and formulated as a local residua correction. The computation of suitable stabilization 
parameters depends on the differential operators of the problem and the mesh parameters.

The Generalized Stabilisation Techniques (GST) presented in this paper broaden the 
stabilization formalism used in the Galerkin/least-squares FEM to cover both the FVM and the 
FDM. In the next sections the basics of the GST are illustrated; the formulation for the FEM, 
FVM and FDM are derived, the choice of a suitable stabilisation parameter is discussed and the 
numerical  application  through  one  dimensional  transport  problem  simulation  and  two 
dimensional dam-break simulation is demonstrated.



2. BASIC IDEA

A one  dimensional  example  of  Eq.  1  without  the  diffusion  term,  which  does  not 
contribute to the instability of the numerical method, will be used to demonstrate the basic idea 
of the GST.

After each time step of the global standard numerical approximation of the solution of 
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see Figure 2.
This averaged local residua is then advectively transported as a correction of the time 

derivative in each of the contributed nodes as shown in Figure 2. 

Figure 2: The basic idea of the GST

This correction flux is given as
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where the flux of the residua is

                                                             flux = u ⋅ U                                                            (8)

This correction is dependent on a correction parameter e , that takes the shape of the 
spacial  discretizing  mesh  into  consideration.  This  parameter  is  given  for  a  scalar  valued 
problem in Eq. 9 and will be discussed later on.
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                                                          (9)

where ∣ue∣  the norm of the averaged velocity and se  is the element size.



3. GST FORMALIZATIONS

The  GST procedure  can  be  listed  in  three  steps,  that  apply  to  all  three  numerical 
methods, i.e. FDM, FVM or FEM, see Figure 3:

Figure 3: Sketch of the GST steps for the FVM, FDM and FEM

Applying the GST differs slightly according to the method used. The following section 
shows the GST formulation in a two dimensional domain for each method separately.

3.1 Stabilized FEM

In  order  to  approximate  Eq.  3  using the  finite  element  method  the  domain    is 
discretized into nel  finite elements e  .

As mentioned in the introduction the GST is a generalization of the Galerkin/least-
squares  finite  element  method (GLS).  The  derivation  of  this  semi-discrete  stabilized  finite 
element approximation is carried out via the combination of a standard Galerkin approximation 
and the least squares approximation. This can be described roughly, for the differential equation 
in Eq. 3 as follows:
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The first term contains the Galerkin approximation and the second term contains the 
least-squares stabilization which is composed of the sum of integrals over the element interiors. 
This approximation is called semi-discrete GLS method. In this paper a modified semi-discrete 
Petrov-Galerkin method is used, which is a predecessor of the GLS method, see Hughes (1989). 
The difference is that rather than having L  operating on the weighting space, only its advective 
part, Ladv , acts there.

The  Global  Approximation here  is  achieved  by  using  the  standard  Galerkin 
approximation, see the first term in Eq. 10. 



Figure 4: The Local Residual Correction of a finite element

The Local Residual Calculation and the time derivative Local Residual Correction is given in 
the equation
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where the mean element residua of the Galerkin approximation is computed and then used by 
applying the transportation operator and stabilization parameter for the correction of the com-
puted time derivative.

The in such a way determined time derivatives can then be integrated over time by uni-
versal time integration procedures. The element stabilization parameter e  plays an important 
role for the stability and consistency of the approximation.

3.2 Stabilized FVM

The Approximation of Eq. 1 using the Finite Volume Method requires the discretization 
of the problem domain into m  control volumes. The Global Approximation of the solution is 
achieved by using the central differencing scheme for the advection and diffusion term of Eq. 1. 
The time derivative of the unknown variable is thereby given in
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Figure 5: The Local Residual Correction of a finite volume

The Local Residual Calculation is conducted according to Eq. 6 on the neighbouring nodes 
across the facets of the finite volume, see Figure 5. Thus the Local Residual Correction of the 
computed time derivative is given, according to Eq. 7, in the form
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where i  is the correction parameter of the edge connecting the neighbouring nodes and ui  is 
the averaged velocity parallel to the edge.

The  time  derivatives  can  be  integrated  over  time  using universal  time  integration 
procedures.

3.3 Stabilized FDM

The  Approximation  of  Eq.  2  using  the  Finite  Difference  Method  requires  the 
discretization of the problem domain into n×m  grid nodes. The Global Approximation of the 
solution is achieved by using the central differencing scheme, for instance, for the advection 
and diffusion term of Eq. 2. The time derivative of the unknown variable is thereby given in
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Figure 6: The Local Residual Correction of a finite difference node

The Local Residual Calculation is conducted according to Eq. 6 on the neighbouring 
nodes on each side in both direction x and y of the coordinate system, see Figure 6. Thus the 
Local Residual Correction of the computed time derivative is given, according to Eq. 7, in the 
form
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where i  is the correction parameter of the connecting edge between the neighbouring nodes 
and ui  is the averaged velocity parallel to the edge.

The  time  derivatives  can  be  integrated  over  time  using universal  time  integration 
procedures.



4. STABILIZATION PARAMETER

4.1 One-Dimensional Scalar Valued Problem

In the case of a one dimensional scalar valued problem the element parameter  e  is chosen 
according to the Equation
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where  se  is the element size, ∣ue∣  is norm of the averaged velocity  and  opt  is a Peclet 
number based Optimality Parameter given in 

                                                          opt = coth Pe − 1
Pe                                              (17)

Pe  is the element Peclet number, which is given in

                                                              Pe =
∣ue∣

se                                                         (18)

4.2 Multi-Dimensional Scalar Valued Problem

For Application in multidimensional scalar transport problems the Euclidean norm ∥v∥  
of the velocity vector and an element expansion  he  associated with this vector are used to 
define the element corrector parameter e  as given in
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4.3 Multi-Dimensional Vector Valued Problem

For multidimensional vector valued transport problems a norm ∥Ladv∥  of the transport operator 
is used
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The optimality parameter opt  is computed in the same way as in Eq. 17, but the element Peclet 
number now depends on the operator norms of the advection and diffusion differential operator

                                                                  Pe :=
∥Ladv∥⋅he

∥Ldiff∥
                                                          (21)

The choice of a suitable operator norm has a significant influence on the quality of the solution. 
On  the  basis  of  the  general  definition  in  Kolmogorov  and  Fomin  (1975)  of  the  norm of 
continuity operators in (Euclidean) normed spaces we define the following operator norm. If the 
differential operator has the form



                                                           Ladv=∑ Ladv , i=∑ Ai
∂
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the operator norm is defined as

                                                              ∥Ladv∥:=∑Ai
2                                                  (23)

where   Ai  is the spectral radius of the norm of the operator component and is calculated 
according to

                                                              Ai=max∣ j Ai∣                                                    (24)

i.e  Ai  is the largest  absolute eigenvalue of the Matrix Ai .
This definition is consistent in all dimensions, starting by the one dimensional scalar 

valued advective diffusive problem up to more dimensional and vector valued problems. This 
approach for the stabilization parameter leads to very good numerical results for a large number 
of advection dominated problems.

5. NUMERICAL TEST CASES AND APPLICATIONS

The capabilities and characteristics of the presented generalized stabilisation techniques 
are demonstrated by two examples using the Finite Volume Method implementation of the GST 
and an explicit second order Adam-Bashforth scheme for the time integration. The first one is a 
classical  one  dimensional  transport  problem  that  assesses  the  correctness  of  the  applied 
technique.  The  second  is  a  dam  break  induced  flow  problem  which  displays  the  good 
stabilisation effect.

5.1 One Dimensional Transport Problem

The governing equation of the transport  problem is given in Eq. 1.  The transported 
substance  concentration  C  is  subjected  to  convection  and  diffusion  in  a  one  dimensional 
domain of the length L=1m . The size of each finite volume is  x=0.1m  The chosen time step 
throughout the tests is   t=0.001 s . The transport velocity is assumed to be uniform u=1m / s  
over the whole domain. Two tests are carried out each with a different diffusion coefficient to 
demonstrate the behaviour of the GST in different modes according to the variation of the 
Peclet number. The boundary and initial conditions are

C L=0,t =1, C L=1, t =0, C x , t=0=0.

The analytical solution of the steady state of this initial and boundary value problem is 
given in Versteeg and Malalasekera (2007). Numerical calculations using GST and the well 
known  standard  central  (CD)  and  upwind  differencing  (UD)  schemes  see  Versteeg  and 
Malalasekera (2007) are carried out until they reach the steady state and then compared with the 
analytical solution.

Figure 7 shows plots of the analytical solution and numerical solutions at time t=1s  
and  after  reaching  the  steady  state  for  the  diffusion  coefficient  =0.1m2/s  and  Pe=12  
accordingly, where the transport process is diffusion dominant. The good quality of the solution 
using the GST can be recognized.



Figure 7: Analytical (AL) and numerical solutions of the diffusion dominant problem

In Figure 8 the solutions of the advection dominant transport problem with Pe2 are presented 
for =0.02 m2/s , Pe=5 .

Figure 8: Analytical (AL) and numerical solutions of the advection dominant problem

As  one  can  see  the  GST  approximation  has  a  good  stabilisation  effect  in  the  advection 
dominated regime with Peclet number greater than 2 .

5.2 Two Dimensional Dam Break Induced Flow

The dam break induced flow problem is governed by the set of shallow water equations. 
These  equations  describe  water  flows (u,v)  with  a  free  surface  (η)  under  the  influence of 
gravity, thus it is a vector valued two dimensional problem. The stabilisation parameter used in 
this case is the one described in Eq. 20.

Following the established practice, see Bechteler et al. (1993), of testing this kind of 
numerical models, i.e. shallow water models, a simulation run of a dam break in two closed 
pools joints together with a breach, see Figure 9, is undertaken.



Figure 9: The computational domain with 4231 voronoi-region finite volumes

The computational domain is divided into (4231) voronoi-region finite volumes. The 
average size of the decomposition is   x=0,5m . The bottom of the pools and the breach are 
horizontal and frictionless. The water velocity at the walls is considered equal to zero. Initially 
the reservoir , the left side pool, water level is 1 m high and the right side pool water level is 0.2 
m high, giving a ratio of  hl /hr=0,2  . Figure 10 shows the results of this test case at (t = 1 s) 
immediately after the dam break, (t = 7 s), where the bore is well-developed, and (t = 8 s), 
where the wave front has hit the rear side of the right pool.

Figure 10: Two-dimensional dam-break induced flow simulation

As shown in Figure 10 the simulated dam break induced flow has a realistic propagation of the 
front  wave  without  the  oscillation  otherwise  resulting  from  only  using  the  global 
approximation.
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