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ABSTRACT 

Traditional finite elements are based on simple geometrical elements such as edges 
in the one-dimensional space, triangles and quadrangles in the plane as well as tetra- 
and hexahedrons in the three-dimensional space. The extension of the geometrical 
basis to any polyhedron is enabled by the definition of a local coordinate system 
called the natural element coordinates. The formulation of interpolation and test 
functions in natural element coordinates enables the formulation of generalized finite 
elements. The differentiation and integration of these interpolation and test functions 
are essential for finite element approximations. In the paper convex and special non 
convex polyhedron are considered as geometrical basis for generalized finite 
elements as well as for the formulation of interpolation and test functions on natural 
element coordinates. Furthermore, methods for the numerical differentiation and 
integration of functions on these generalized finite elements are introduced. The 
paper closed with two applications in the range of fluid mechanic and structural 
mechanics. 
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INTRODUCTION 

Physical processes in natural science and engineering are the deformation behavior 
of solids, the flow behavior of fluids or the temperature behavior of materials. These 
physical processes are describable by differential equations. The analytical solution 
of these equations is not or only with extensive complexity computable.  

The finite element method is a numerical method for the interpolation of given basic 
values as well as for the numeric approximation of partial differential equations. The 
basic idea of the finite element method is to decompose the investigation area in 
subareas. The subareas are called finite elements. A finite element can be understood 
as a triple consisting of a geometrical basis, a set of degrees of freedom and a set of 
interpolation functions. Usually, the geometrical basis of classical finite elements are 
edges in the one dimensional space, triangles and quadrangles in the plane as well as 
tetra- and hexahedrons in the three dimensional Euclidian space. 

The extension of the geometrical basis to any polyhedron is enabled by the definition 
of a local coordinate system called natural element coordinates. The natural element 
coordinates are computable for any convex and special non convex polyhedron. The 
formulation of generalized finite elements is enabled by the formulation of 
interpolation and test functions which base only on natural element coordinates. The 
differentiation and the integration of the natural element coordinates are essential for 
finite element approximations. 

NATURAL ELEMENT COORDINATES 

For a generalized consideration of any polyhedron as basis for finite elements a 
uniform description of all points of the finite element is necessary. This is achieved 
with the definition of the natural element coordinates [Milbradt 2001]. 

CONVEX POLYHEDRON 

There are several approaches to describe convex polyhedron. The description of the 
convex polyhedron Z by the Minkowsky product of its vertices E suggests using the 

factors iλ  of the linear combination as element coordinates. 
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If a m-dimensional convex polyhedron has m+1 linear independent vertices, the 
factors are unique and called barycentric coordinates. If a convex polyhedron 
consists of more than m+1 vertices, the factors are not unique. If the natural 
neighborhood coordinates introduced by Sibson [Sibson 1980] are restricted to the 
convex polyhedron, one receives unique natural element coordinates, which are 
related to the vertices of the convex polyhedron. These natural element coordinates 
are consistent with the barycentric coordinates on simplexes. The determination of 
the natural element coordinates of a point x concerning the convex polyhedron Z is 
based on the computation of the Voronoi diagram of second order concerning the 
vertices and the point x. 
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The computation of natural 
element coordinates is formu-
lated as follows: 
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Figure 1: Voronoi diagram of second order 

The contour lines of natural element coordinates are shown in figure 2 for the 

regarded points 1
e , 3

e  and 4
e .  

 

Figure 2: Natural element coordianates on a convex polhedron 

 
An extension of the geometrical basis can be achieved through special non convex 
polyhedron. 

NON CONVEX POLYHEDRON 

The natural element coordinates of a convex polyhedron depends on the Voronoi 
decomposition of the vertices. The computation of natural element coordinates of a 
non convex polyhedron compared to a convex polyhedron is not transferable 
directly. An adjustment of the construction of the Voronoi decomposition is 
necessary.  

The Voronoi decomposition of the first order concerning the vertices is shown in 

figure 3. The vertices 9
e , 10

e and 11
e form a region which is a part of the convex hull 

but not a part of the non convex polyhedron. These vertices are represented by the 

Voronoi vertex 11
v . A description for the Voronoi vertices 5

v , 6
v and 12

v can occur 
analogous.  
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The middle picture of figure 3 shows the Voronoi decomposition concerning the 
point x. The modified Voronoi decomposition without a consideration of the Voronoi 

vertices 11
v and 12

v are shown in the right picture.  

 
Figure 3: Voronoi decomposition of a non convex polyhedron 

A computation of natural element coordinates with consideration of Voronoi 

vertex 11
v leads to an influence of the needless vertices 9

e and 10
e . Therefore, the 

corresponding Voronoi vertices have to be removed.  

The left picture of figure 4 shows the contour lines of the wrong natural element 

coordinates which are computed with consideration of the Voronoi vertex 11
v  

and 12
v . The right picture shows the correct contour lines. 

Figure 4: Contour lines of the natural element coordinates 

A description of special non convex polyhedron can be achieved via regularized set 
operators. The regularized set operators are used on the convex hull of the non 
convex polyhedron and specific convex subareas. The convex subareas describe all 
points which are not part of the non convex polyhedron. 

 

Figure 5: Convex hull and convex subareas 

By adjusting the construction of the Voronoi decomposition the computation of the 
natural element coordinates of convex polyhedron is transferable to special non 
convex polyhedron. The local coordinate systems have the same characteristics. The 
introduced geometrical basis is used for a generalization of the finite elements. 
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DIFFERENTIATION OF NATURAL ELEMENT COORDINATES 

The differentiation of natural element coordinates proceeds in an algorithmic-
analytic manner. Retrospective, the computation of natural element coordinates 
depends on the Voronoi decompostions of first and second order. Using the quotient 
rule the differentiation of natural element coordinates can be formulated as:  

 
The Voronoi regions of first and second order 
dependent on the point x are finite-bounded 
polygons which can be triangulated. The 
derivation of the measure of the Voronoi region 
can be considered as the sum of the derivation of 
the measure of all their triangles.  

 
  

  

A generalized consideration of a triangle with the vertices a , b and c leads to: 
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The vertices a , b and c of the triangle are either vertices of the Voronoi 
decomposition of first order or vertices of the Voronoi decomposition of second 
order.  

In the figure above the Voronoi region ),( 1exVR is triangulated in the triangles 1A  

and 2A . The triangle 2A is based on the vertices a , b and c . The vertex a is arose 

by the Voronoi decomposition of second order and depends on the point x . Instead 

of the vertices b and c are arose by the Voronoi decomposition of first order and 

independent of the point x . Therefore, the derivation of these vertices gets the value 

zero. The differentiation of the measure of triangle 2A is shown below. 
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The derivation of the Voronoi vertices of second order can be computed via the 
corresponding center of the Voronoi circle.  
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In the figure below the Voronoi vertex a is the center of the Voronoi circle pass 

through the vertices 1
e , 2

e and point x . The corresponding circle equations are: 
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The coordinate vector of the center a can be formulated as: with 
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The components of a are quotients, therefore the quotient rule is used: 
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For example, the operands u and v for the coordinate 1a are shown below: 
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The derivation of the operands u and v with respect to 1x is mentioned below: 
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NUMERICAL INTEGRATION 

The approximation of partial differential equations with the finite element method 
leads to integral equations whose integrals generally are not analytic computable. 
The main problem is the computation of the integral over the geometrical 

basis EΩ of the finite elements. 

 
 

Special methods for a numerical integration 
[Fröbel 2004] also known as quadrature are 
essential for the use of the finite element 
method. The complexity of the computation 
depends of the chosen method. The 
definition of the Riemann integral shows a 
possible numerical approximation. With a 
gradually refinement of the sub-regions the 
accuracy level of the approximation can be 
increased. 

The numerical integration of the polyhedron E can be formulated as a sum of an 

integration of all sub-regions
iE . The numerical integration of the sub-regions can 

be achieved via quadrature formulas. 

 

 

The values of the coefficients )(N

jw and )( N

jλ depends on the selected quadrature 

formula. One kind of a quadrature formula is the Gaussian quadrature formula. 

NUMERICAL INTEGRATION VIA GAUSSIAN QUADRATURE FORMULA 

The computation of the coefficients )( N

jw and )( N

jλ on the interval [-1, 1] can be 

achieved with Legendre polynomials. In the literature well known Gaussian points 
are given for edges in the 1-dimensional space, for triangles and quadrangles in the 
2-dimensional space as well as for tetra- or hexahedrons in the 3-dimensional space.  

A transformation of the well known Gaussian points on the sub-regions of the 
polyhedron is necessary. The transformation is accomplished via the Jacobian 
matrix. The Jacobian matrix allows establishing a relationship between both local 
coordinate systems. 

Figure 6: Transformation of the unit polyhedron to the convex polyhedron 
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FINITE ELEMENT APPROXIMATION 

The finite element approximation is a numerical method to approximate a solution of 

the unknown function )(xu which satisfy the equation 

   F u 0 .  

Now, we consider the equation above to be a boundary value problem. Generally, the 
equation is a system of partial differential equations with associated boundary 

conditions. The idea of this method is to find the unknown solution )(xu not in the 

infinite-dimensional space but to find an optimal approximation )(xuh
of the 

solution in a finite-dimensional sub-space. The finite-dimensional sub-space is 

spanned by a finite set of interpolation functions iφ formulated in natural element 

coordinates and called basic functions. The approximation of the unknown solution 
has the form: 

   
   
        

 

If we insert the approximation )(xuh of the solution )(xu into the equation which we 

like to solve, this equation is not fulfilled accurately in all cases. The occurring 
difference is called defect or residual: 

    
 

In order to receive an optimal approximation the defect must be minimized. The 
standard Galerkin method assumes that the defect may not lie in the finite-
dimensional sub-space of the approximation. The defect should be orthogonal to all 

basic functions iφ of the interpolation space: 

      
    

APPLICATIONS 

The first application from the range of a flow behavior computes the propagation of a 
material concentration. The corresponding two-dimensional diffusion equation can 
be formulated as follows: 

 

 

 

The standard Galerkin method and the implicit Euler method lead to the system of 
equations below. M is the mass matrix and D the corresponding diffusion matrix. 
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As initial condition a material 
concentration in the middle of 
the investigation area is 
injected. Figure 7 shows the 
used decompositions and the 
corresponding initial con-
ditions. The used 
decompositions based on 
quadrangles and hexagons as 
well as on Voronoi cells.  
 
The finite element approxi-
mation on the three de-
compositions generates the 
expected distribution.  
 

Figure 7: Initial conditions and concentration after 10 minutes 

 

The second application is a standard benchmark problem [Stein 2003]. A stretched 
plate with a circular central hole under plane strain condition is considered. An 
elastic material behavior is assumed. Due to the symmetric geometry of the system 
only the consideration of a quarter plate is necessary. 
 

Figure 8: Structural system of the perforated pane 

 

The weak form of the corresponding differential equation can be formulated as: 
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The computation was carried out with edge-quadratic test function of second order. 
The underlying decompositions are quadrangles with 1273 degrees of freedom and 
hexagons with 627 degrees of freedom. The results of the stress are shown in figure 9 
below.  

 

Figure 9: Plots of the computed stress 

In spite of the small number of degrees of freedom the decomposition based on 
hexagons leads to a better approximation of the maximum displacement as well as a 
better displacement on the perforation. 

CONCLUSIONS 

Generalized finite elements on the basis of convex and non-convex polyhedron are 
presented. The new flexibility achieved by generalized finite elements leads to 
simplified mesh generation and adaptive decomposition. Methods for optimization of 
decompositions are the consequence of a transfer of well known criteria from 
triangles and quadrangles to polyhedron. 
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