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Impreciseness, incomplete knowledge, linguistic vagueness and randomness are the main 
sources of uncertainty in hydrological engineering. The enhancement of the information 
content of hydrological data by including a quantification of the resulting uncertainties is 
very important to help the engineer make better informed decisions. A fuzzy possibilistic 
computational framework, in which the estimation and propagation of the uncertainty that 
is induced by the inherent impreciseness and incomplete knowledge in hydrological data 
and simulation techniques are consistently fulfilled, is the subject of this paper. 
 
INTRODUCTION 
 
The proper evaluation of the different uncertainties in hydrological observations and the 
modelling process in a scientifically rigorous way has been and still is a challenging arena 
for research and development. Different concepts and techniques with different 
philosophical backgrounds exist for handling uncertainty in hydrological modelling and 
simulation. The estimation and propagation of the kind of uncertainty resulting from 
impreciseness and incomplete knowledge are the main themes of this paper. The theory of 
fuzzy sets and the underlaid possibility theory offer the appropriate concepts and techniques 
for the purpose of dealing with such uncertainty. Fuzzy sets were proposed as a new 
concept to deal with the uncertainty induced by impreciseness or vagueness rather than by 
randomness, see [1]. Possibility theory is related to the theory of fuzzy sets by defining the 
concept of a possibility distribution as a fuzzy restriction on the values that may be assigned 
to a variable, see [2]. In the following section modeling and processing the kind of 
uncertainty resulting from impreciseness and incomplete knowledge will be introduced. 
Fuzzy possibilistic interpolation and numerical methods will be visited in the section that 
follows. The applicability of these is then demonstrated with the help of two case studies in 
coastal morphodynamics and groundwater modelling. 
 
POSSIBILISTIC PROCESSING OF UNCERTAINTY 
 
The notions of gradual possibility and necessity presented by possibility theory extend 
fuzzy set theory to be able to model partial belief. Possibility theory is an uncertainty 
calculus based on the idea of gradual membership offered by fuzzy set theory. Modelling 
partial truth is the essence of fuzzy sets. The definitions of fuzzy sets and the associated 
membership function, as given in the following, deliver the sense of gradualness in the 



compatibility of a statement with a state of fact, hence the degree of the truth of the 
statement. 
 
Fuzzy Set over 

€ 

R  
Let 

€ 

R  be the universal set of the real numbers. A fuzzy set 

€ 

˜ X  over 

€ 

R  is defined as a set of 
ordered pairs 

€ 

(x,µ ˜ X (x))  of real numbers, 

€ 

x ∈ R , and assigned values of a membership 
function, 

€ 

µ ˜ X (x)∈ [0,1] , representing the degree, in which the real number 

€ 

x  satisfies 
certain properties. 

In this context fuzzy set theory based only on the multi-valued logic, which deals with 
partial truth only, has nothing to say about partial belief and uncertainty. Fuzzy sets placed 
in the constellation of possibility theory have a possibility theoretic interpretation different 
from the one taken from the preliminary definition that is based on a multi-valued logic. 
Given the case, in which the value of a variable x is not known precisely and all that is 
known about the value of x is that “

€ 

x  is 

€ 

X ”, where 

€ 

X  is a set of possible values of 

€ 

x , this 
corresponds to a situation of incomplete information and impreciseness. In possibility 
theory the membership function of the fuzzy set is replaced by a possibility distribution 
function. Given a specific state of knowledge the possibility distribution function expresses 
the level of possibility that a value in a set of different values is in fact the value of the 
variable x, see [3]. 
 
Possibility Distribution Function 
A possibility distribution function 

€ 

µ ˜ x  of an unknown variable 

€ 

x  is a mapping 

€ 

µ ˜ x : X ⊂ R→ [0,1] from the set 

€ 

X of the possible values of a variable 

€ 

x  to the unit interval 
[0,1], where 

€ 

µ ˜ x (ξ) = 0  means that 

€ 

x = ξ  is rejected as impossible, and 

€ 

µ ˜ x (ξ) = 1  means that 

€ 

x = ξ  is totally possible. 
Partial belief aroused by the knowledge embodied in the possibility distribution 

function 

€ 

µ ˜ x (ξ)  is quantified and conveyed by two dual measures in possibility theory, 
namely possibility and necessity measures. Possibility measure evaluates the consistency of 
the statement 

€ 

x ∈ A , where 

€ 

A is a non empty set, with the available knowledge represented 
by the possibility distribution function 

€ 

µ ˜ x (ξ) . In a dual manner to possibility measure, 
necessity measure evaluates the certainty of the statement 

€ 

x ∈ A . This certainty is implied 
by the available knowledge embodied in the possibility distribution function 

€ 

µ ˜ x (ξ) . For 
more information on possibility and necessity measures see [3]. 
 
Calculus of Fuzzy Numbers 
A fuzzy number 

€ 

˜ x  is a convex, normal fuzzy set over the set of real numbers 

€ 

R  with an 
upper semi-continuous possibility distribution function, a bounded support set and exactly 
one element 

€ 

m ∈ R  with 

€ 

µ ˜ x (m) = 1. The real number 

€ 

m is called the modal value of the 
fuzzy number. Examples of fuzzy numbers are given in Figure 1. For more information on 
fuzzy sets and numbers see [3]. 
 



 
 
Figure 1. Examples of fuzzy numbers and the so-called α-Cut sets 

€ 

[ ˜ x ]α  of a fuzzy number 
 

The basis for a fuzzy mathematical framework was established on ZADEH’s genuine 
idea of extending functions of real numbers to functions of fuzzy sets by means of the so-
called extension principle [4]. This has opened the door for the development of a fuzzy 
calculus that enabled the integration of the fuzzy possibilistic estimation of uncertainty in 
the classical mathematical concepts used in system and process modelling. 

Using computational procedures for evaluating functions with an arithmetic notion on 
the set of fuzzy numbers, without dropping the basic idea of the extension principle as a 
possibility propagation mechanism consistent with possibility and necessity measures, is 
very essential. Since the introduction of ZADEH’s extension principle many approaches 
have been proposed. The so-called arithmetic of LR-fuzzy numbers is one of the first of 
these approaches. It presumes special membership functions of the fuzzy operands. This 
restriction confines its application to a very small area of simple problems. The formulation 
of the extension principle in terms of a mapping of the α-cut sets of the fuzzy operands to 
an α-cut set of the fuzzy result has stimulated the adoption of interval arithmetic [3]. This 
approach results in an inconsistent propagation of possibility when applied to problems 
with a non-trivial mathematical complexity. In [5] the so-called vertex method was 
proposed. This method is also based on the α-cut set formulation of the extension principle. 
For the evaluation of monotonic functions the vertex method is a consistent method for the 
correct propagation of possibility. For non-monotonic functions further development is still 
needed. 
 
FUZZY POSSIBILISTIC INTERPOLATION AND NUMERICAL METHODS 
 
Fuzzy interpolation methods can be understood as procedures for interpolating data, in 
which the impreciseness or fuzziness is a non-separable part of the sampling points, as well 
as procedures for interpolating either crisp or fuzzy data quantifying the fuzziness induced 
by the reduction of the actual state of the interpolated analytical or empirical function. 
 
Fuzziness in the sampling points 
Given is a set of fuzzy data such that at various crisp sampling points 

€ 

xi  there is a fuzzy 
sampling quantity 

€ 

˜ y i  with   

€ 

i =1,,m . The interpolation methods, used for interpolating 
such discrete fuzzy data in terms of relatively simple functions, can be based on the simple 
form of an interpolating function 
 



€ 

˜ f (x) = ˜ y i ⋅ϕ i (x)
i=1

m

∑  (1) 

 
Considering a one-dimensional linear interpolating function the basis functions take the 
form of: 
 

€ 

ϕ1(x) :=
x2 − x
x2 − x1

 (2) 

 

€ 

ϕ2 (x) :=
x − x1
x2 − x1

 (3) 

 
Fuzziness of the interpolating function 
The set of sampling data is an incomplete information item, because it does not completely 
account for the original analytical or empirical function. Interpolation methods are used to 
get a totally unknown piece of information from this incomplete information item. Thus, 
the values of the interpolating function are implicitly uncertain, regardless of whether the 
sampling data are precise or not. Moreover, the choice of the method for interpolating 
specific data is a subjective decision. It depends on the expert opinion on which 
interpolating function best suits the data set. Hence, an extra amount of uncertainty is also 
induced by this decision. This kind of implicit uncertainty can be quantified, for example, 
in the case of linear interpolation, by substituting 

€ 

x  in Eq. (1) with a fuzzy function 

€ 

˜ q x( )  
that maps the coordinate 

€ 

x  of the interpolation position to a fuzzy number. The possibility 
distribution function 

€ 

µ ˜ q  of the resulting fuzzy number 

€ 

˜ q x( )  should reflect the subjectivity 
in the choice of the method of interpolation and satisfy the interpolation conditions, i.e, 

€ 

˜ q x1( ) = x1  and 

€ 

˜ q x2( ) = x2 . Such a possibility distribution function can be given for the case 
of one-dimensional linear interpolating function by 
 

€ 

µ ˜ q (ξ) =

L x −ξ
x − x1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ for x1 ≤ ξ < x

1 for ξ = x

R ξ − x
x2 − x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ for x < ξ ≤ x2

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 (4) 

 
where 

€ 

L  and 

€ 

R  are given in the following, where 

€ 

ϕL  and 

€ 

ϕR  are given by the subjectively 
chosen basis functions 

€ 

ϕ1  and 

€ 

ϕ2 , respectively. 

€ 

L(ξ ) := (1−ξ )αL (1−ϕL )+ϕL ; αL :=
1−ϕL

ϕL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; ξ =

x −ξ
x − x1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (5) 

 

€ 

R(ξ ) := (1−ξ )αR (1−ϕR )+ϕR ; αR :=
1−ϕR

ϕR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; ξ =

ξ − x
x2 − x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (6) 



Numerical methods for solving fuzzy differential equations 
Differential equations are usually used to model real natural phenomena. The uncertainty 
about this kind of models in its reflection of reality can hardly be quantified, but the 
uncertainty of the measured data that give an account of the regarded phenomenon, can still 
be integrated into the model. Measured data appear in such models as initial and boundary 
conditions as well as in the parameters that control the behaviour of the model. The fuzzy 
possibilistic interpolating functions, suggested above, are the basis of possibilistic 
numerical methods, such as a fuzzy possibilistic FVM. Appling such a numerical method to 
solve a fuzzy initial and boundary problem will result in a fuzzy approximate solution. 
Consequently, the uncertainty that results from impreciseness in the initial and/or boundary 
conditions, or in the model parameters, can be integrated in the resulting solution. 
Moreover, the fuzziness resulting from the discretisation of the domain of the problem can 
also be incorporated in the solution. 
 
FUZZY POSSIBILISTIC DIGITAL TEMPORAL BATHYMETRIC MODEL 
 
Bathymetric data resulting from several surveying campaigns with different survey goals 
are the basic data sets that are used in building Digital Bathymetric Models. The fact that 
the measurements of the altitude of the seafloor are taken at discrete and distributed points 
in time and space reduces the actual state of the measured continuous bathymetry. In 
addition to this inadequate representation of the seafloor, the genuine impreciseness in the 
basic bathymetric data resulting from errors and inaccuracy of the acquisition method 
introduces, if neglected, an uncertainty in the bathymetric model. Moreover, as bathymetric 
models are based on data sets and the associated interpolation procedures, the assumption 
that the function resulting from the interpolation procedure represents the real morphology 
of the seafloor is flawed with great uncertainty. 

Figures 2, 3 and 4 show in plan view the fuzzy spatial-temporal interpolation of the 
altitude of the seafloor in the summer of the year 2002 for a study area that covers the near 
shore and surf zones north of the “Pirolatal” (Island of Langeoog, North Sea, Germany). In 
Figure 2 the least possible and most necessary distributions of the minimum 

€ 

z0  and the 
maximum 

€ 

z
0
 altitude of the seafloor with the possibility level of α = 0.0 are shown. Figure 

3 shows the distributions of the minimum 

€ 

z0.5  and the maximum 

€ 

z
0.5

 altitude of the 
seafloor with the possibility level of α = 0.5. Figure 4 shows the most possible and least 
necessary distribution of the altitude of the seafloor 

€ 

mz  with the possibility level of α = 1.0, 
where 

€ 

mz  is the modal value of the fuzzy altitude 

€ 

˜ z (x, y,t) . 
In this academic case study attention is paid to the spatial-temporal interpolation of 

fuzzy bathymetric data points with fuzzy altitudes (

€ 

˜ z ) of the seafloor at crisp positions 

€ 

(x, y,t) . The used interpolation procedure is a fuzzy bilinear interpolation method. The 
uncertainty induced by the interpolating function, the density of the data set and the 
characteristic of the investigated area are considered in the resulting fuzzy possibilistic 
digital temporal bathymetric model. The relationship between the data density and the 
characteristics of the study area was expressed in a characteristic-density factor, with which 



a modification of the resulting possibility distribution can be conducted. In the case of 
spatial-temporal interpolation methods one has to differentiate between two cases. The first 
one is the morphologic characteristic associated with the spatial density and the second one 
is the morphodynamic characteristic associated with the temporal density. 

 

 
 
Figure 2. The minimum 

€ 

z0  and the maximum 

€ 

z
0
altitude with the possibility level of 0.0 

 

 
 
Figure 3. The minimum 

€ 

z0.5  and the maximum 

€ 

z
0.5

 altitude with the possibility level of 0.5 
. 
 

 
 
Figure 4. The modal value 

€ 

mz  of the fuzzy altitude with the possibility level of 1.0 . 
 
FUZZY POSSIBILISITC GROUNDWATER MODEL 
 
In the process of groundwater exploration, information should be collected in locations as 
close as possible and at times as frequent as feasible. This can be the case in an ideal 
situation. However, the inaccessibility of the geological formations of a groundwater 
system, the difficulties associated with the field investigations and considerations of cost 
make it impossible to collect thorough and densely distributed sets of data in space and time 
that reflect the real situation of the groundwater system. Moreover, the fact that all the 



measured quantities are the result of estimations based on subjective interpretations and 
experience results in a non-ignorable uncertainty in the collected data sets. In addition, 
uncertainty will be induced by the successive conceptualization and modelling of the 
groundwater system based on subjective interpolations and extrapolations. 

Figure 5, Figure 6 and Figure 7 show the results of a simulation of the flow of 
groundwater and the transport of a contaminant in a hypothetical groundwater system with 
hypothetical fuzzy hydrogeological parameters and initial and boundary conditions. In 
Figure 5 the least possible and most necessary distribution of the maximum values of the 
hydraulic head 

€ 

h
0(t = 8)  and concentration 

€ 

c
0(t = 8)  with the possibility level of α = 0.0 

are shown. Figure 6 shows the most possible and least necessary distribution of the values 
of the hydraulic head 

€ 

mh (t = 8)  and the concentration 

€ 

mc(t = 8)  with the possibility level 
of α = 1.0, where 

€ 

mh  and 

€ 

mc  refer to the modal values of the fuzzy functions 

€ 

˜ h (x, y,t)  and 

€ 

˜ c (x, y,t) , respectively. In Figure 7 the least possible and most necessary distribution of the 
minimum values of the hydraulic head 

€ 

h0(t = 8)  and concentration 

€ 

c0(t = 8)  with the 
possibility level of α = 0.0 are shown.  

In this academic case study the flow in the system is assumed to be only horizontal as 
an example of a regional groundwater flow. The flow of groundwater and the transport of 
the contaminant are simulated by a numerical fuzzy model based on the fuzzy finite volume 
method. The time of the simulation is 15 days. Abstraction of groundwater from a well in 
the middle of the simulated region and injection of a contaminant at the upper corner of the 
region are assumed. 
 

 
 
Figure 5. The distribution of 

€ 

h
0(t = 8)  and 

€ 

c
0(t = 8)  after eight days. 

 

 
 
Figure 6. The distribution of 

€ 

mh (t = 8)  and 

€ 

mc(t = 8)  after eight days. 



 
 
Figure 7. The distribution of 

€ 

h0(t = 8)  and 

€ 

c0(t = 8)  after eight days 
 
CONCLUSION 
 
In conclusion, using fuzzy sets to deal with partial belief problems and uncertainty requires 
the adoption of the concepts of possibility theory. Fuzzy sets in their possibility theoretic 
interpretation confine and restrict the uncertainty that might have been otherwise stemmed 
by omitting parts of important information, namely the degree of the lack of information 
and impreciseness. A computational framework of fuzzy numbers based on their 
interpretation as possibility distributions was presented. New fuzzy interpolation methods 
are used to meet the need of estimating the uncertainty resulting from the discrete and 
distributed state of the measured data sets as well as the intrinsic impreciseness in the 
measurements. On this basis fuzzy numerical methods for the solution of fuzzy initial and 
boundary value problems are also addressed. 
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