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Abstract
The solution of advection-dominated equations with the method of finite elements led to the
development of stabilization techniques. The choice of suitable stabilization parameters is often
application-dependent and difficult. A stabilized finite element procedure on the basis of a
Galerkin/least-squares approximation is presented for systems of instationary advection-dominated
equations in multidimensional domains. A general rule for computing suitable element stabilization
parameters is outlined which uses the operator norms of the differential operators and the element
expansion. The application of this approximation to solve a macroscopic traffic model and a
morphodynamic model shows the applicability of this approach.
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1 Introduction

Many phenomena in physics and technology relate to transport phenomena and the reaction of states
and substances. Such physical and technical questions can often be represented with stationary or
instationary partial differential equations. The approximation of transport dominant problems with the
method of finite differences or the method of finite elements frequently leads to instabilities of the
approximated solution.
To overcome most of the limitations in the Galerkin method by solving transport dominant problems ,
the stabilized finite element method adds mesh dependent terms to the usual Galerkin method.
Stabilized finite element methods have grown popular over the last years. In the work presented here,
the approximation is based on stabilization with a combination of the Galerkin and least-squares
approach [1]. The choice of suitable stabilization parameters is difficult and often application-
dependent.

2 Stabilized finite element approximation

The following general instationary problem shall be viewed. Let Ω represent the open bounded domain
in ℝn and Γ its boundary. Find a vector valued function U :ℝm such that

∂U
∂ t
L US=0 (1)

is valid, where L is a quasi-linear differential operator and S are source and sink terms. We assume that
all necessary boundary and initial conditions which guarantee the existence of the solution are
available. 
The quasi-linear operator has the following form:

L≡Ai
∂
∂ xi
− ∂
∂ xi

K ij
∂
∂ x j

 (2)

Here Ai is the ith Euler Jacobian matrix and Kij is the diffusivity matrix. Therefore, the operator L can
be understood as sum of an advection operator Ladv and a diffusion operator Ldiff:

L=LadvLdiff (3)
each operator can be divided again into its local components with the following representation. As this
can be shown for the transport operator:

L=∑ Li=∑ Ai
∂
∂ xi

(4)

In order to approximate the equation (1) with the finite element method the domain Ω is discretized
into nel finite elements Ωe.

2.1 Semi-discrete SUPG

The derivation of the semi-discrete stabilized finite element approximation is carried out via the
combination of a standard Galerkin approximation and the least squares approximation. This can be
described roughly, for the differential equation (1) as follows:

∫

U , tL US⋅w d∑

e=1

nel

e∫
e
L⋅wU , tL USde=0 (5)

The first integral contains the Galerkin approximation and the second term contains the least-squares
stabilization which is composed of the sum of integrals over the element interiors. This approximation
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is called semi-discrete GLS method. We use the following modified semi-discrete SUPG method,
which is a predecessor to the GLS method.

∫

U , tL US⋅w d∑

e=1

nel

e∫
e Ladv⋅wU , t

GL USde=0 (6)

where U , t
G is determined by the standard Galerkin-method. The difference to the GLS is that rather

than having L operating on the weighting space, only its advective part, Ladv, acts there.
Obviously, an implementation in form of an predicator corrector procedure is to be realized. In the
predicator step the time derivatives of the unknown variables are computed over a standard Galerkin
approximation. In the corrector step the mean residue of the Galerkin approximation in the element is
then computed and used by applying the transportation operator and stabilization parameter for the
correction of the computed time derivative. The in such a way determined time derivatives can then be
integrated over time by universal time integration procedures (Euler, Heun, Runge-Kutta, etc.). The
element stabilization parameter τe plays an important role for the stability and consistency of the
approximation. 

2.2 Stabilization parameter

One-dimensional scalar valued problem
The following scalar valued one-dimensional stationary advection diffusion equation for (0,1)

v⋅c, x−⋅c, xx=1  with c 0=c 1=0 . (7)
is examined. In this case the element parameter τe is chosen on the basis of finite difference
considerations and has the form:

e :=opt
1
2
 x
∣v∣

(8)

where ∆x is the length of the domain discretisation, v the transport velocity and αopt an optimality
parameter computed by

opt :=coth Pe− 1
Pe

(9)

based on the Peclet number

Pe:=
∣v∣⋅he

∣∣
(10)

Multi-dimensional scalar valued problem
Application in multidimensional scalar transport problems using the Euclidean norm ∥v∥ of the
velocity vector and an element expansion he associated with this vector.

 e := opt
1
2

he

∥ v ∥
(11)

Multi-dimensional vector valued problem
Consequently for multidimensional vector valued transport problems a norm ∥ Ladv∥ of the
transport operator is used.

 e := opt
1
2

he

∥ Ladv∥
. (12)

The optimality parameter αopt is computed in the same way as in equation (9)
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 opt :=coth Pe − 1
Pe

,

but the element Peclet number now depends on the operator norms of the advection and diffusion
differential operator

Pe:=
∥ Ladv∥ ⋅ he

∥ Ldiff∥
. (13)

The choice of a suitable operator norm has a large influence on the quality of the solution. On the basis
of the general definition [3] of the norm of continuity operators in (Euclidean) normed spaces we
define the following operator norm. The differential operator has the form presented in (4) 

L=∑ Li=∑ Ai
∂
∂ x i

then the operator norm is
∥ L∥ := ∑ ∥ Li∥

2 (14)
where the norm of the operator component is calculated by

∥ Li∥ :=∣  max A i ∣
(15)

with  max Ai  the absolutely largest eigenvalue of the Matrix Ai.
This definition is consistent in all dimension, starting by the one dimensional scalar valued advective
diffusive problem up to more dimensional and vector valued problems. This approach for the
stabilization parameter leads to very good numerical results for a large number of simulation models.
In chapter 3, two different models are presented and results are discussed.

3 Numerical examples

3.1 Macroscopic traffic modelling 

Macroscopic traffic models are an essential tools to assess and control traffic flows on main highways.
The traffic is described by the mean velocity V and the traffic density ρ. The used equations are very
similar to the Navier-Stokes equations such as the macroscopic traffic model of Kerner and Konhäuser
[2].

∂ 
∂ t

= − V
∂ 
∂ x

−  ∂ V
∂ x

∂ V
∂ t

= − V ∂ V
∂ x

−
c0
2


∂ 
∂ x




∂ 2V
∂ x 2

 1
  V e− V

(16)

In contrast to fluid dynamics, the law of conservation of momentum is not valid in traffic dynamics.
The term  V e− V  /  is called the adaptation term or relaxation term. It is assumed that the current
velocity V(x, t) is adapted to a prescribed equilibrium velocity Ve within a certain time τ. The
equilibrium velocity Ve, which depends at least on the density, and the adaptation time are the most
important parameters of all macroscopic traffic models. The model is characterized by a density
dependent pressure parametrisation with constant velocity of propagation c0

2 and due to an
additional diffusion term, with constant viscosity µ which reflects some observations of
viscous traffic flow in reality.
The above one-dimensional vector valued advection diffusion problem (16) can be expressed as
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∂ U
∂ t

 A ∂ U
∂ x

− B∂
2U

∂ x 2
− S=0 (17)

with

U=[V] , A=[ V 
c0
2


V] , B=[0 0

0

 ]  and S=[ 0

V e− V
 ] .

Now we have the following operator-norms

∥ A ∂
∂ x ∥ =∣ V ∣ ∣ c0∣ and ∥ B ∂ 2

∂ x 2∥ =
as well as the element stabilization parameter

 e := opt
1
2

 x
∣ V ∣  ∣ c0∣

. (18)

Here is  opt :=coth Pe − 1
Pe

, and 

the element Peclet number can be determined by 

Pe:= ∣ V ∣ ∣ c0∣  ⋅ h

 /
. (19)

The complexity of the arising phenomena is demonstrated in an academic case example. A closed
single lane is considered. It is assumed that the initial traffic state is in equilibrium state with a
prescribed density ρe and a small local perturbation of the uniform density distribution. The properties
of the jam formations are studied in detail depending on the density ρe.
Figure 1 shows some typical results of a numerical perturbation analysis for macroscopic traffic
models. The equilibrium is stable for free traffic with ρe<15 veh./km and for dense traffic with
ρe>60 veh./km. In the stable case the perturbations of the equilibrium state decrease with increasing
time. The equilibrium is unstable for congested traffic. There are three different phenomena of
congested traffic with respect to jam formations: simple jam, stop and go traffic and wide jam. The
jams move backward with a velocity of about -15±5 km/h. The different phenomena of jam formation
can also be observed in real traffic on highways.
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Figure 1: Density evolutions with ρe = 25 veh.⁄km (a), ρe = 50 veh.⁄km (b) and ρe = 56.25 veh.⁄km (c)
in space-time diagram and spatial density distributions at time t=3, 11, 30 min

3.2 Morphodynamic modeling in coastal engineering 

The hydro- and morphodynamic processes in the nearshore area create highly complex phenomena.
Suitable modeling tools are necessary for the assessment of natural developments in coastal areas as
well as of impacts of human interventions in form of coastal protection buildings. The phenomena to
be taken into account are wind waves, currents and sediment transport. These can be described by the
following system of 9 time-depending partial differential equations [4].
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∂ K i

∂ t
= −

∂  a

∂ x i

 C g

K j

k  ∂ K j

∂ x i

−
∂ K i

∂ x j
∂ 
∂ t

= − U i C gi ∂ 
∂ x i

− k xi

∂ ui

∂ t
 f ⋅ ∂ h

∂ t

∂ a
∂ t

= − 1
2a
∂
∂ x i
 U i C Ei a2−

S ij

 g a
∂ U i

∂ x i


U i T i − T i

B
 g a


 B

 g a

∂ U i

∂ t
= −U j

∂ U i

∂ x j

− g
∂ 
∂ x i

− 1
 d

∂ S ij

∂ x i

 1
 d T i − T i

B
∂ 
∂ t

= −
∂ U j d
∂ x j

∂ C
∂ t

= − U i
∂ C
∂ x i

 ∂
∂ x i  i

∂ C
∂ x i  S

qi = ∫ − h


U i C dz  qbi

∂ h
∂ t

= − 1
1− n

∂ qi

∂ x i

(20)

Here the first equations describe the evolution of wind waves, with the wave number vector K, the
angular frequency σ and the wave amplitude a. The second block are the shallow water equations with
the current vector U and the mean water evaluation  . The last equations describe the sediment
transport and the changes of the sea bottom.
Each of these partial models for waves (W), current (U) and transport (S) can be transformed into the
above simplified form by introduction of suitable differential operators.
For example, the second partial model, the two dimensional shallow water equation, can be expressed
as

∂ U
∂ t

 A x
∂ U
∂ x

 A y
∂ U
∂ y

− Bx
∂ 2U
∂ x 2

− By
∂ 2U
∂ y2

=0 (21)

with

U=[U x

U y

 ] , A x=[U x 0 g
0 U x 0
d 0 U x
] , A y=[U y 0 0

0 U y g
0 d U y
] ,

Bx=[ 0 0
0 0 0
0 0 0] , By=[0 0 0

0  0
0 0 0]  

and the diffusion coeffision  . Now we have the following operator-norms

∥ Ladv∥ =  ∣ v x∣  g⋅ d 2
 ∣ v y∣  g⋅ d 2 (22)

and

∥ Ldiff∥ =2⋅  (23)
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as well as the element stabilization parameter

 e := opt
1
2

he

∥ Ladv∥
with  opt :=coth Pe − 1

Pe
and Pe:=

∥ Ladv∥ ⋅ he

∥ Ldiff∥
.

The presented model system has been applied to an investigation of morphodynamic processes in
coastal areas. The south tip of the island Sylt, located in the German bay, is formed by wind waves and
tidal currents. The Assessment of the bathymetric stability is a substantial pre-condition for coastal
protection interferences by humans. 
To specify the influence of wind waves on the dynamic stability of the system Sylt comparisons
between morphodynamic simulation results with and without the influence of wind waves were made.
The model area covers the entire island of Sylt. The simulation period covers 10 mean tides, whereby
only the last tidal period was evaluated in the analysis. For the wind waves a quasi-stable situation
with waves from west, a single wave period of 5s and a wave height of 1m in deep water was used.

Figure 2: flow field Figure 3: wave height and direction

The completely coupled model computation updates the depth in each calculation step. The presented
depth changes are determined by taking the difference between the last two tidal periods. Red areas
mark areas of erosion and blue those of sedimentation.
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Figure 4 erosion and sedimentation
only by tidal influence

Figure 5 erosion and sedimentation by
combined effects of waves and tide

The illustrations show clearly the significance of wind waves to the morphologic dynamic stability of
the south tip of the Sylt island. If the waves are neglected and only tides are regarded as the dominant
factor, wrong conclusions are likely to be drawn. A holistic view as well as a holistic modeling of all
significant processes in the coastal area are necessary in order to capture the relevant processes.

4 Conclusions

A stabilized finite element procedure on the basis of a Galerkin/least-squares approximation for a wide
range of applications was presented. A general rule is indicated for computing suitable element
stabilization parameters using an operator norm of the differential operators and the element
expansion. Numerical examples have shown that the new formulation successfully improves the
stability.
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