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Abstract. Different  types  of  finite  elements based  on polygonal  bounded  cells  as  well  as
parametric cell are presented. A local coordinate system is introduced for such cells called
natural  element  coordinates.  The  represented  natural  element  coordinates can  be  used  to
formulate interpolation functions and test  functions on convex polyhedrons in the n-dimen-
sional Euclidian space. The interpolation on the basis of the natural element coordinates are
c0-continuous in the vertices and at least c1-continuous within the cell. To describe warped-
lined or -planed elements this  interpolation functions can be used as shape functions.  The
presented  method  is  applied  to  a  standard  benchmark  problem.  A  geometrically  two-
dimensional square disk with a hole is subjected to a constant boundary traction acting upon
two opposite sides. Additional some aspects on higher order interpolation spaces based on
parametric cells are presented. 
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1 INTRODUCTION

To solve a partial differential equation or a system of partial differential equations numerical
methods are often used. A widely used method is the finite element method (FEM). It is based
on a decomposition of the investigation area, a space of interpolation functions and a set of
degrees  of  freedom.  The  classical  geometrical  basis  of  finite  elements  are  triangles,
quadrangles,  tetrahedrons  and  hexahedrons.  A  generalized  approach  is  the  description  of
geometry using geometric  cells.  The use of  arbitrarily  dimensional  convex polyhedrons  as
geometrical basis of finite elements increases substantially the flexibility with the generation of
finite  element  decompositions.  Sometimes  this  is  the  only  way  to  generate  a  unique
decomposition for a given node distribution. Convex polyhedrons in combination with a simple
local  coordinate  system,  the  natural  element  coordinates,  permits  an  uniform  element
formulation of interpolation functions  and test  functions on convex polyhedrons.  With this
polyhedrons  and  interpolation  functions  it  is  possible  to  formulate  parametric  finite  cell
elements.

2 GEOMETRICAL BASIS

The geometrical basis of the finite elements is formed by a compact non-empty set in the
Euclidean space ℝn . Typical representatives of compact sets in the Euclidean space are such,
which are finite and bounded. The simplest compact sets are bounded intervals in the  ℝ1 ,
triangles and squares in the ℝ2  as well as tetrahedron or hexahedron in the three-dimensional
space. Convex polyhedrons are generalizations of the described geometrical elements.

2.1  Convex polyhedrons

Convex  polyhedrons  Z in  the  n-dimensional  Euclidean  space  ℝn  can  be  described  in
different equivalent kinds. The definition of a convex polyhedron over the convex hull of given
reference  points,  later  on  called  vertices  E={e1, e2,eN } ,  frequently  forms  the  basis  for
suitable construction methods and/or algorithms.  In the  context of the formulation of finite
elements the description of convex polyhedrons over the Minkowsky product

Z :={p : p=1 e12 e2N eN ,i0∧∑
i

i=1} (1)

appears more suitable.
The largest number of m, for which there are m linear independent points in the set of the

vertices  E,  is  called  the dimension of  the  convex polyhedron  Z.  A  m-dimensional  convex
polyhedron has a finite number of sides and each side is again a convex polyhedron. The (m-1)-
dimensional  sides  of  Z are  called  facets,  the one-dimensional sides  edges  and  the  zero-
dimensional sides are the vertices.

The class of the considered geometry can be extended to special non-convex polyhedrons
[7], if these can be constructed over regularized set operations [1] from the convex hull of the
vertices and convex sub-polyhedrons. These convex sub-polyhedrons describe the points of the
convex hull, which are not contained in the non-convex polyhedron.
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Figure 1: Construction of non-convex polyhedron
The generalized treatment of convex and non-convex polyhedrons as geometrical basis of

finite elements is substantial for an uniform description of all points of a finite element. This is
achieved by an uniform formulation of element coordinates.

Figure 2: Polyhedrons in different dimensions

2.2  Natural element coordinates

The formulation of a local coordinate system permits an uniform element formulation in the
method of the finite elements. The description of the convex polyhedron Z by the Minkowsky
product (1) of its vertices  E suggests to use the factors of the linear combination as element
coordinates. If a  m-dimensional convex polyhedron has m+1 linear independent vertices, the
factors are unique and called barycentric coordinates. If a convex polyhedron consists of more
than  m+1 vertices,  the  factors  are  not  unique.  If  the  natural  neighborhood  coordinates
introduced by Sibson [8] are restricted to the convex polyhedron, one receives unique natural
element coordinates, which are related to the vertices of the convex polyhedron. 

The determination of the natural element coordinates of a point x concerning the polyhedron
Z is based on the computation of the Voronoi diagram of second order concerning the corners
and the point x.
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Figure 3: Voronoi decomposition of the convex
polyhedron with sub-regions 

Firstly,  the  Voronoi decomposition of  first  order of  a  convex polyhedron is  determined
concerning its vertices ei . Each vertex of the convex polyhedron has its own Voronoi region.
The Voronoi region of a vertex ei  is the set of all points p which has a smaller or equal distance
to the vertex ei  as their distance to the remaining vertices e j  

VR ei:={ p∈ℝn :d  p ,ei≤d  p ,e j∀ j≠i } . (2)
The Voronoi region of second order of a convex polyhedron is determined concerning its

vertices ei  and a point x of the convex polyhedron. A Voronoi region of second order is the set
of points p, whose distance to the point x is smaller or equal their distance to a vertex ei , if its
distance to this vertex is smaller or equal their distance to the remaining vertices e j  

VR x ,ei:={p∈ℝn :d  p , x ≤d  p ,ei≤d  p ,e j ∀ j≠i } . (3)
The natural element coordinates of the point x concerning the vertex ei  are determined over

the Voronoi regions of second order (see Figure 3). Each Voronoi region of first or second order
assigns  itself  a  Lebesgue  measure   VR ei  or   VR x ,e i  (see  [4]).  This  measure
corresponds to the common surface area in the 2-dimensional Euclidean space. The relationship
of the measure of the Voronoi region of second order of a vertex and the point x to measure of
the Voronoi regions of first order of the point x concerning all vertices of the convex polyhedron
is called the unique natural element coordinates

i  x ,ei  :=
 VR  x ,ei  
 VR  x  

. (4)

If the considered point  x lies outside of the polyhedron, then no representation in natural
element coordinates exists. If the point x is accurately on a facet of the polyhedron (see Figure
4), the resulting Voronoi regions of second order have infinite measures. It can be shown by
analyzing of limiting value [4] that the calculation of the natural element coordinates depends
only on vertices of the facet and thus the calculation is limited to the convex polyhedron of the
facet.
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Figure 4: Calculation of the natural element
coordinate on the facet

Due to the construction of the natural element coordinates of a convex polyhedron by using
the  Voronoi  regions  of  second order  the  natural  element  coordinates  of  a  point  x do  not
inevitably depend on each vertex of the polyhedron (see Figure 5). If the Voronoi region of
second order of the point x and a vertex is empty, then we say that the point x and the corner are
not neighboring. The coordinate of the point x concerning this vertex has the value zero.

Figure 5: Influence of the coordinates

The natural element coordinates are equivalent to the barycentric coordinates of the simplex
and have a bilinear characteristic inside the squares. The natural element coordinates contain
the well-known local coordinate systems of classical finite element theory.

Firstly, the construction of the natural element coordinates is limited to convex polyhedrons.
During the  expansion to  non-convex polyhedrons  the  occurring  neighborhood relations  are
modified [7].
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Figure 6: Characteristic of the natural element coordinates in 2- and 3-
dimensional convex polyhedrons

2.3  Parametric cells

The geometry  of  polyhedral elements  is  planar  bounded.  Investigation areas  which  are
describable  as  polyhedrons can be  decomposed accurately.  In order  to  be able  to describe
investigation areas with curved boundaries parametric cells as geometrical supports of finite
elements are used.

The parametric cells used here are special topological cells [4]. Parametric cells are described
by convex or non-convex polyhedrons and a map F (a homeomorphism). The map is described
by form functions for the facets (corners, edges, sides). Its formulation in the natural element
coordinates of the polyhedron is independent of the element geometry

x= ∑
vertexes

N j r ∑
edges

N ij r ∑
sides

N ijk r  . (5)

For the classical parametric elements the map is defined always on a unit standard element.
Contrary to this case, the considered parametric cells do not transform the vertices.

Figure 7: Parametric cell
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Thus, the map only transforms the facets of the polyhedron and  has the following form:
x=∑

edges

N ij r ∑
sides

N ijk r  . (6)

Functions of the following kind are used as form functions on the edges:
N ij :=i r  j r 

l
⋅f ij  s r 

with

sm:=
m r 

i r  j r 
, m∈i , j  .

The effect of these form functions decreases over the cell uniformly. The decay of the form
function  with the power l can be controlled inside the cell.

If an edge of the cell with the vertices ei  and e j  is regarded, the form of this edge can be
described by the function f ij s  as a function of the natural element coordinates of that edge.
For  each  point  on the  regarded edge  i j=1  is  valid  as  well  as  si=i  and  s j= j .
Therefore the form function N ij r   yields the deviation of the given edge from the linearity
secant. At any other edges the form function vanishes.

As form function on the sides we use functions of the form
N ijk :=i r  j r k r 

l f ijk s r −N ij r N ki r 
with

sm :=
m r 

i r  j r k r 
, m∈i , j , , k  .

We  consider  an  even  side  of  the  cell  with  the  vertices  ei , e j , , ek  and  the  edges
ei ,e j , ,ei ,ek  . The shape of the side can be described by the function f i , j , , k s  as a
function of the natural element coordinates of the side. For each point on the regarded side
i jk=1  is  valid  as  well  as  si=i  and  sk=k .  Therefore  the  form  function
N ijk r   yields the deviation of the given shape from shape spanned by the form function

of the edges of this side. At any other sides and edges the form function vanishes.

3 INTERPOLATION FUNCTIONS

The basic idea of the finite element method is the approximation of the unknown solution  by
simple interpolation functions with still unknown parameters. The interpolation functions are
defined on the geometric basis of the finite elements. The solution of the differential equation
will  be  transferred  to  the  solution  of  a  system of  algebraic  equations  for  the  unknown
parameters. 

The  natural  element  coordinates  allow  a  generalized  formulation  of  the  interpolation
functions on polyhedrons and/or parametric cells.  Now, we concentrate on the definition of
edge-oriented interpolation functions.

The Lagrangian interpolation functions i  can be used as interpolation functions in the finite
element method. Now, we present the the formulation in natural element coordinates. For edge-
linear interpolations the interpolation functions consist of natural element coordinates of the
associated vertices exclusively.

7



P. Milbradt and J. Schierbaum

1:=1

2:=2

3:=3

4:=4

5:=5

Figure 8: Lagrangian interpolation functions - edge-linear

For edge-square interpolations the interpolation functions for the centric degree of freedom of a
edge is the product of the two natural element coordinates of the associated vertices multiplied
by a pre-factor. The interpolation function associated to a vertex depends on all natural element
coordinates of the vertices of all outgoing edges.

1:=1⋅1−2⋅2⋅1−2⋅5

2:=2⋅1−2⋅1⋅1−2⋅3

3:=3⋅1−2⋅2⋅1−2⋅4

4:=4⋅1−2⋅3⋅1−2⋅5

5:=5⋅1−2⋅4⋅1−2⋅1

12:=4⋅1⋅2

23:=4⋅2⋅3

34:=4⋅3⋅4

45:=4⋅4⋅5

15:=4⋅1⋅5

Figure 9: Lagrangian interpolation functions - edge-square

The presented interpolation functions permit a c0-continuity interpolation on decompositions
consisting  of  polyhedrons  and  parametric  cells  and  form  the  basis  for  finite  element
approximations.
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4 FINITE ELEMENT APPROXIMATION

The finite element approximation is a numerical method to approximate a solution of the
unknown function u  x   which obeys the equation

F u=0 . (11)
Now, we consider equation (11) to be an boundary value problem. Generally, equation (11)

is a system of partial differential equations with associated boundary conditions.
The idea of this method is to find the unknown solution u x   not in the infinite-dimensional

space but to find an optimal approximation u x   of the solution in a finite-dimensional sub-
space. The finite-dimensional sub-space is spanned by a finite set of interpolation functions i

the so called basic functions. The approximation of the unknown solution has the form

u x =∑
i=1

N

cii  x  . (12)

If we insert the approximation u x   of the solution u x   into equation (11) which we like
to solve, this equation is not fulfilled accurately in all cases. The occurring difference is called
defect or residuum

=F  u . (13)
In order to receive an optimal approximation, the defect must be minimized. The standard

Galerkin method assumes that the defect may not lie in the finite-dimensional sub-space of the
approximation. The defect should be orthogonal to all basic functions i  of the interpolation
space:

∫


i=0 . (14)

The set of equations resulting from this yields the coefficients from (12).

4.1 A mechanical system

A standard benchmark problem [9] is regarded. A stretched plate with a circular central hole
under plane strain conditions is considered. By using symmetry it is sufficient to discretize one
quarter of the system. The measurements and boundary conditions of the system are shown in
Figure 8.
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Figure 10: Whole system and one quarter system
An elastic material behavior is used as constitutive law. The strain-displacement relation-

ships can be written as

=[xx

 yy

xy
]=[ ∂∂ x

0

0 ∂
∂ y

∂
∂ y

∂
∂ x

][u x

u y
]=Lu (15)

where L is the differential operator matrix and u is the displacement vector.
The relation between strains and stresses is given by the linear elastic law

=[ xx

 yy

xy
]=C  (16)

where 

C=
E 1−

1 1−2 [ 1


1−
0


1−

1 0

0 0
1−2

21−
] (17)

being the elasticity matrix with Poisson’s ratio   and Young’s modulus E.
The equilibrium condition is given as
LT  f =0 (18)

where f is the body force vector.
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Multiplying the equilibrium condition with a test function v and integrating over the domain
 , we obtain the weak formulation

∫


[Lv ]TC [Lu ]d=∫


vT f d∫
N

vT t d  (19)

where t  are surface tractions on Dirichlet boundary N .
In the following the displacements and the stresses for two different decompositions are

illustrated. The results correspond essentially with published solutions [9].

Figure 11: Grid and displacement multiplied by hundert

The calculations were accomplished with edge-square interpolation functions. The calcu-
lation grid consists of a regular rectangle grid with 1273 degrees of freedom and of a quasi-
regular hexagon grid with 627 degrees of freedom. In the case of less degrees of freedom the
quasi-regular hexagon grid provides a better approximation for the maximum displacement and
the displacement at the edge of hole. 

Figure 12: Contour plot of stresses 
In the Figure 12 one can see the contour plot of the stress  yy  and the concentration of the

stress at the hole. The maximum stress appears at the edge of hole. 
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5 CONCLUSION

Generalized finite elements are presented. Their basis are general convex and non-convex
polyhedrons  as  well  as  parametric  cells.  Introducing  the  natural  element  coordinates  on
polyhedrons and parametric cells a generalized formulation of form functions and interpolation
functions could be achieved. These finite elements are suitable for the interpolation and for the
approximation of solutions of partial differential equations as well. The example benchmark
problem "stretched plate with a circular central hole" shows the use of the presented concept.
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